Guide to the DAX Strategy Indices

Formerly known as Guide to the Strategy Indices of Deutsche Börse AG

Version 3.5
April 2020
General Information

With effect to August 2019 Deutsche Börse AG has transferred the administration of the DAX Equity Indices formerly known as the Equity Indices of Deutsche Börse AG to its affiliate STOXX Ltd.

STOXX Ltd. develops, creates and publishes Indices for certain uses, e.g., the issuance of Financial Instruments. In general, an Index is any figure published or made available to the public that is regularly determined by the application of a formula (or any other method of calculation, or by an assessment) on the basis of the value of one or more underlying assets or prices, including estimated prices, actual or estimated interest rates, quotes and committed quotes, or other values or survey.

All DAX Equity Indices are governed by the respective index methodology applicable to the respective index or index family. Purpose of this Guide to the DAX Equity Indices (“Guide”) is to provide for a comprehensible index methodology in continuity of the former Guide to the Equity Indices of Deutsche Börse AG as last amended with effect from 26 June 2019 (version 9.2.4).

In order to ensure the highest quality of each of its indices, STOXX Ltd. exercises the greatest care when compiling and calculating equity indices on the basis of the rules set out in this Guide.

However, STOXX Ltd. cannot guarantee that the various indices, or the various ratios that are required for index compilation and computation purposes, as set out in this Guide, are always calculated free of errors. STOXX Ltd. accepts no liability for any direct or indirect losses arising from any incorrect calculation of such indices or ratios.

The DAX Strategy Indices in no way represent a recommendation for investment. In particular, the compilation and calculation of the various indices shall not be construed as a recommendation of STOXX Ltd. to buy or sell individual securities, or the basket of securities underlying a given index.
Contents

1 General Index Information 9
 1.1 DivDAX and DivMSDAX 9
 1.2 DAXplus Seasonal Strategy 9
 1.3 DAXplus Export Strategy 9
 1.4 DAXplus Covered Call 9
 1.5 Leveraged and Short Indices 9
 1.6 DAXplus Protective Put 9
 1.7 DAXplus Minimum Variance Germany 10
 1.8 DAXplus Maximum Sharpe Ratio Germany 10
 1.9 DAXplus Maximum Dividend 10
 1.10 DAXplus Risk Trigger Germany 10
 1.11 Dividend Points Indices 10
 1.12 DAXplus Family 10
 1.13 DAX Risk Control Indices 10
 1.14 Currency-Hedged Indices 11
 1.15 DAXplus 30 Decrement 40 Index 11
 1.16 idDAX 50 Equal Weight Index 11
 1.17 idDAX 50 Equal Weight Decrement 4.00% Index 11
 1.18 idDAX Leveraged/Short NC Indices 11
 1.19 DAX Equal Weight Index 12

2 Index Composition 13
 2.1 DivDAX and DivMSDAX 13
 2.2 DAXplus Seasonal Strategy 14
 2.3 DAXplus Export Strategy 14
 2.4 DAXplus Covered Call 15
 2.5 Leveraged and Short Indices 15
 2.6 DAXplus Protective Put 16
 2.7 DAXplus Minimum Variance Germany 16
 2.8 DAXplus Maximum Sharpe Ratio Germany 17
 2.9 DAXplus Maximum Dividend 17
 2.10 DAXplus Risk Trigger Germany 18
 2.11 Dividend Points Indices 18
 2.12 DAXplus Family 19
 2.13 DAX Risk Control Indices 20
 2.14 Currency-Hedged Indices 20
 2.15 idDAX 50 Equal Weight Index 20
 2.16 idDAX Leveraged/Short NC Indices 21
 2.17 DAX Equal Weight Index 21

3 Calculation 23
 3.1 DivDAX, DivMSDAX, DAXplus Seasonal Strategy and DAXplus Export Strategy 23
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1</td>
<td>Index Formulas</td>
<td>23</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Computational Accuracy</td>
<td>25</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Cap Limit</td>
<td>25</td>
</tr>
<tr>
<td>3.1.4</td>
<td>New Listings and Deletions</td>
<td>25</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Chaining</td>
<td>26</td>
</tr>
<tr>
<td>3.1.6</td>
<td>Ordinary Chaining</td>
<td>26</td>
</tr>
<tr>
<td>3.1.7</td>
<td>Unscheduled Chaining</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>DAXplus Covered Call and DAXplus Protective Put</td>
<td>28</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Index Formulas</td>
<td>28</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Computational Accuracy</td>
<td>29</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Rolling</td>
<td>29</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Trading Interruption/Suspension</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>Leveraged and Short Indices</td>
<td>30</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Index Formula</td>
<td>30</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Calculation of the optimal leverage factor</td>
<td>32</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Adjustments due to extreme market movements</td>
<td>33</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Reverse Split</td>
<td>34</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Leverage Effect</td>
<td>34</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Computational Accuracy</td>
<td>34</td>
</tr>
<tr>
<td>3.4</td>
<td>DAXplus Minimum Variance and Maximum Sharpe Ratio Germany</td>
<td>35</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Weight Calculation</td>
<td>35</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Weighting Factors Calculation</td>
<td>37</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Index Formula</td>
<td>38</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Computational Accuracy</td>
<td>39</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Chaining</td>
<td>40</td>
</tr>
<tr>
<td>3.5</td>
<td>DAXplus Maximum Dividend</td>
<td>40</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Index formula</td>
<td>40</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Determination of weighting factors</td>
<td>40</td>
</tr>
<tr>
<td>3.6</td>
<td>DAXplus Risk Trigger Germany</td>
<td>41</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Index formula</td>
<td>41</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Calculation Accuracy</td>
<td>41</td>
</tr>
<tr>
<td>3.7</td>
<td>Dividend Points Indices</td>
<td>41</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Index formula</td>
<td>41</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Calculation Accuracy</td>
<td>42</td>
</tr>
<tr>
<td>3.8</td>
<td>DAXplus Family-Index</td>
<td>42</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Index Formula</td>
<td>42</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Calculation Accuracy</td>
<td>42</td>
</tr>
<tr>
<td>3.9</td>
<td>DAX Risk Control Indices</td>
<td>43</td>
</tr>
<tr>
<td>3.9.1</td>
<td>Index Formula</td>
<td>43</td>
</tr>
<tr>
<td>3.9.2</td>
<td>Determination of the Target Weight (Tgtw)</td>
<td>43</td>
</tr>
<tr>
<td>3.9.3</td>
<td>Determination of the Equity Weight and Index Rebalancing Days</td>
<td>44</td>
</tr>
<tr>
<td>3.10</td>
<td>Currency-Hedged Indices</td>
<td>45</td>
</tr>
<tr>
<td>3.10.1</td>
<td>Daily Hedged Indices</td>
<td>46</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Monthly Hedged Indices</td>
<td>46</td>
</tr>
</tbody>
</table>
Guide to the
DAX Strategy Indices

3.11 DAXplus 30 Decrement 40 index 47
3.11.1 Index Formula 47
3.12 idDAX 50 Equal Weight 47
3.12.1 Index Formula 47
3.13 idDAX 50 Equal Weight Decrement 4.00% 48
3.13.1 Index Formula 48
3.14 idDAX Leveraged/Short NC Indices 49
3.14.1 Index Formula 49
3.14.2 Adjustments due to extreme market movements 52
3.14.3 Reverse Split 54
3.14.4 Sensitivity table for gap risk factor (GFM in bps): 54
3.14.5 List of Indices 54
3.15 DAX Equal Weight Index 55
3.15.1 Index Formula 55
3.15.2 Determination of weighting factors 56
3.16 Discretion 56
3.16.1 Exercise of Discretion 56
3.16.2 Responsibility for Decision-making 57
3.17 Calculation Correction 59
3.17.1 Rule-based Correction 59
3.17.2 Non-rule based Correction 59
3.17.3 Notifications 60
4 Adjustments 61
5 General Information 61
5.1 Index Labels 61
5.2 Historical Data 61
5.3 Index Termination Policy 62
5.4 Limitations 62
6 Methodology Review 63
6.1 Frequency of Review 63
6.2 Review Procedure 63
6.2.1 Initiation of Methodology Review 63
6.2.2 Decision and Escalation 64
6.3 Material Changes with Consultation 64
6.4 Non-Material Changes without Consultation 66
7 Appendix 66
7.1 ISINs and Alpha Codes 66
7.2 Contact 71
History of Amendments to the Rules and Regulations

All amendments listed with effect prior to August 2019 are amendments to the Rules and Regulations of the former Strategy Indices of Deutsche Börse AG.

Amendments listed as of August 2019 are amendments to the Rules and Regulations of DAX Strategy Indices in continuation of the Rules and Regulations of the former Strategy Indices of Deutsche Börse AG.

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 April 2020</td>
<td>3.5</td>
<td>Clarification of wording in chapter 2.9</td>
</tr>
<tr>
<td>16 March 2020</td>
<td>3.4</td>
<td>Clarification of wording in chapter 2.9</td>
</tr>
<tr>
<td>10 March 2020</td>
<td>3.3</td>
<td>Deletion of the idDAX 12x Leveraged NC (TR) (EUR), idDAX 14x Leveraged NC (TR) (EUR) and idDAX 15x Leveraged NC (TR) (EUR) indices</td>
</tr>
<tr>
<td>02 October 2019</td>
<td>3.2</td>
<td>Clarifications relating to changes in the EONIA rate determination</td>
</tr>
<tr>
<td>16 August 2019</td>
<td>3.1</td>
<td>Clarification relating to EU Benchmark Regulation and changes relating to the transfer of index administration to STOXX Ltd.</td>
</tr>
<tr>
<td>30 April 2019</td>
<td>2.30</td>
<td>Change to the selection and capping rules of DAXplus Maximum Dividend</td>
</tr>
<tr>
<td>16 Nov. 2018</td>
<td>2.29</td>
<td>Launch of DAX Equal Weight Index</td>
</tr>
<tr>
<td>16 May 2018</td>
<td>2.28</td>
<td>Launch of DAXplus Maximum Dividend Net Return Index</td>
</tr>
<tr>
<td>11 Sep. 2017</td>
<td>2.27</td>
<td>Launch of idDAX Leveraged/Short NC Indices</td>
</tr>
<tr>
<td>03 Aug. 2017</td>
<td>2.26</td>
<td>Launch of idDAX 50 Equal Weight and idDAX 50 Equal Weight Decrement 4.00%</td>
</tr>
<tr>
<td>20 Mar. 2017</td>
<td>2.25</td>
<td>Change of data provider for shareholder structures of DAXplus Family Indices</td>
</tr>
<tr>
<td>25 Apr. 2016</td>
<td>2.24</td>
<td>Edit of wording for the index-specific deviation threshold from one index tick to another Correction of date when calculation of DAX® was starting to use Xetra® prices</td>
</tr>
<tr>
<td>08 Sep. 2015</td>
<td>2.23</td>
<td>Launch of DAXplus 30 Decrement 40</td>
</tr>
<tr>
<td>02. Jun. 2015</td>
<td>2.21</td>
<td>Change of Trigger Level for Reverse Split for Leverage and Short Indices</td>
</tr>
<tr>
<td>08. May 2015</td>
<td>2.21</td>
<td>Launch of monthly currency hedged indices</td>
</tr>
<tr>
<td>Date</td>
<td>Version</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>09. Apr. 2015</td>
<td>Version 2.20</td>
<td>Launch of LevDAX x9, LevDAX x10, ShortDAX x9 and ShortDAX x10</td>
</tr>
<tr>
<td>23. Mar. 2015</td>
<td>Version 2.19</td>
<td>Change of review frequency for DAXplus Family Indices</td>
</tr>
<tr>
<td>17. Feb. 2015</td>
<td>Version 2.18</td>
<td>Change to selection and capping rules of DAXplus Maximum Dividend</td>
</tr>
<tr>
<td>22. Dec. 2014</td>
<td>Version 2.17</td>
<td>Clarification of the rulebook according to IOSCO principles</td>
</tr>
<tr>
<td>20 Aug. 2014</td>
<td>Version 2.15</td>
<td>Launch of HDAX Hedged</td>
</tr>
<tr>
<td>25 Oct. 2013</td>
<td>Version 2.13</td>
<td>Adjustment of extraordinary Replacement rule in DAXplus Maximum Dividend Index</td>
</tr>
<tr>
<td>16 Aug. 2013</td>
<td>Version 2.12</td>
<td>Update of contact details (appendix)</td>
</tr>
<tr>
<td>25 Jul. 2013</td>
<td>Version 2.11</td>
<td>Adjustments due to extreme market movements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Description of price-relevant capital changes in chapter 4</td>
</tr>
<tr>
<td>26 Nov. 2012</td>
<td>Version 2.9</td>
<td>Rule adjustments LevDAX x3 and ShortDAX x3 Indices</td>
</tr>
<tr>
<td>23 Jul. 2012</td>
<td>Version 2.7</td>
<td>Launch of additional LevDAX and ShortDAX Indices</td>
</tr>
<tr>
<td>Jul. 2011</td>
<td>Version 2.6</td>
<td>Launch of DAXplus Minimum Variance / Maximum Sharpe Ratio Net Return Indices</td>
</tr>
<tr>
<td>16 May 2011</td>
<td>Version 2.6</td>
<td>Launch of DivMSDAX</td>
</tr>
<tr>
<td>4 Apr. 2011</td>
<td>Version 2.5</td>
<td>Launch of DAX® Risk Control Indices</td>
</tr>
<tr>
<td>9 Mar. 2011</td>
<td>Version 2.4</td>
<td>Launch of LevDAX® Optimal</td>
</tr>
<tr>
<td>17 Jan. 2011</td>
<td>Version 2.3</td>
<td>Launch of ShortTecDAX</td>
</tr>
<tr>
<td>17 Dec. 2010</td>
<td>Version 2.2</td>
<td>Consideration of cost of borrow in Short Indices</td>
</tr>
<tr>
<td>27 Sep. 2010</td>
<td>Version 2.1</td>
<td>Launch of LevDAX® x2 Monthly, ShortDAX® x2 Monthly</td>
</tr>
<tr>
<td>4 Jan. 2010</td>
<td>Version 2.0</td>
<td>Introduction DAXplus® Family Index</td>
</tr>
<tr>
<td>28 Aug. 2009</td>
<td>Version 1.19</td>
<td>Changed chaining date of DAXplus® Maximum Dividend</td>
</tr>
<tr>
<td>4 May 2009</td>
<td>Version 1.18</td>
<td>Launch of DAX® Dividend Points, DivDAX® Dividend Points</td>
</tr>
<tr>
<td>27 Apr. 2009</td>
<td>Version 1.17</td>
<td>Launch of DAXplus® Risk Trigger Germany</td>
</tr>
<tr>
<td>30 Mar. 2009</td>
<td>Version 1.16</td>
<td>Launch of LevDAX® x4, ShortDAX® x2, ShortDAX® x4</td>
</tr>
<tr>
<td>Date</td>
<td>Version</td>
<td>Event Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>9 Mar. 2009</td>
<td>1.15</td>
<td>Launch of DAXplus® Maximum Dividend</td>
</tr>
<tr>
<td>5 Feb. 2009</td>
<td>1.14</td>
<td>Concretion of exception handling in DivDAX®</td>
</tr>
<tr>
<td>16 Dec. 2008</td>
<td>1.13</td>
<td>Launch of DAXplus® Directors Dealings Germany</td>
</tr>
<tr>
<td>3 Sep. 2007</td>
<td>1.11</td>
<td>Launch of DAXplus® Maximum Sharpe Ratio Japan (JPY), DAXplus® Minimum Variance Japan (JPY)</td>
</tr>
<tr>
<td>9 Jul. 2007</td>
<td>1.10</td>
<td>Launch of DAXplus® Maximum Sharpe Ratio France, DAXplus® Maximum Sharpe Ratio Japan, DAXplus® Maximum Sharpe Ratio Switzerland, DAXplus® Minimum Variance US</td>
</tr>
<tr>
<td>9 Jul. 2007</td>
<td>1.10</td>
<td>Launch of DAXplus® Minimum Variance France, DAXplus® Minimum Variance Japan, DAXplus® Minimum Variance Switzerland, DAXplus® Minimum Variance US</td>
</tr>
<tr>
<td>12 Jun. 2007</td>
<td>1.9</td>
<td>Launch of DAXplus® Maximum Sharpe Ratio Germany</td>
</tr>
<tr>
<td>29 May 2007</td>
<td>1.8</td>
<td>Launch of DAXplus® Minimum Variance Germany</td>
</tr>
<tr>
<td>27 Mar. 2007</td>
<td>1.7</td>
<td>Launch of ShortDAX®</td>
</tr>
<tr>
<td>7 Aug. 2006</td>
<td>1.6</td>
<td>Launch of DAXplus® Protective Put</td>
</tr>
<tr>
<td>28 Jun. 2006</td>
<td>1.5</td>
<td>Launch of LevDAX®</td>
</tr>
<tr>
<td>6 Jun. 2006</td>
<td>1.4</td>
<td>New Cap Limit for DAXplus® Seasonal Strategy</td>
</tr>
<tr>
<td>23 Jan. 2006</td>
<td>1.3</td>
<td>Launch of DAXplus® Covered Call</td>
</tr>
<tr>
<td>24 Oct. 2005</td>
<td>1.2</td>
<td>Launch of DAXplus® Export Strategy</td>
</tr>
<tr>
<td>13 Jun. 2005</td>
<td>1.1</td>
<td>Launch of DAXplus® Seasonal Strategy</td>
</tr>
</tbody>
</table>

CDAX®, Classic All Share®, DAX®, FDAX®, HDAX®, MDAX®, ODAX®, SDAX®, TecDAX®, X-DAX®, X-MDAX®, X-TecDAX® are registered trademarks of Qontigo Index GmbH.

Eurex®, FWB® Frankfurter Wertpapierbörse, Xetra® and XTF® Exchange Traded Funds are registered trademarks of Deutsche Börse AG.
1 General Index Information

1.1 DivDAX and DivMSDAX

The DivDAX® and DivMSDAX are constructed using dividend yield as a selection criterion. DivDAX® contains the 15 companies with the highest dividend yield within the German blue chip index DAX®, DivMSDAX is based on the companies included in MDAX and SDAX.

1.2 DAXplus Seasonal Strategy

The DAXplus® Seasonal Strategy index is a German equity index calculated by STOXX Ltd. This special index concept allows for seasonal investment strategies by locking in the index level achieved during August and September – traditionally, lower index levels prevail during these months. The index comprises the 30 component issues of the blue chip DAX® index, and is calculated accordingly.

1.3 DAXplus Export Strategy

The DAXplus® Export Strategy index consists of strong exporting companies, who thus benefit from strong growth outside the German economy. The index comprises the ten component issues from the DAX® and MDAX® indices with the highest proportion of exports in their revenues.

1.4 DAXplus Covered Call

The DAXplus® Covered Call index reflects the so-called “covered call” option strategy. This strategy – which is also referred to as “buy-write” – involves the purchase of an underlying instrument and the simultaneous sale of a call option on that instrument. The index is based on the DAX® index and a short position in a DAX® call option traded at Eurex®.

1.5 Leveraged and Short Indices

With leveraged indices STOXX Ltd. calculates indices linked proportionally to the movements of its underlying index. A positive change in its underlying index will result in the corresponding leveraged performance of leveraged indices and vice versa.

With short indices STOXX Ltd. calculates indices linked inversely to the movements of its underlying index. A positive change in its underlying index will result in a negative change in short indices and vice versa.

1.6 DAXplus Protective Put

The DAXplus® Protective Put index reflects the Protective Put investment strategy, which is designed to provide protection from losses. This strategy combines an index investment with an options position. It involves buying a put option while simultaneously purchasing the option's underlying. The index is based on the DAX®-index and a long position in a DAX® put option traded at Eurex®.
1.7 DAXplus Minimum Variance Germany

The concept of DAXplus® Minimum Variance Germany is based on the modern portfolio theory. The weights are derived from an optimization that seeks to minimize variance of the portfolio of DAX constituents.

1.8 DAXplus Maximum Sharpe Ratio Germany

The concept of DAXplus® Maximum Sharpe Ratio Germany is based on the modern portfolio theory. The weights are derived from an optimization that seeks to maximize the Sharpe ratio of the portfolio of DAX constituents.

1.9 DAXplus Maximum Dividend

With DAXplus® Maximum Dividend STOXX Ltd. calculates a strategy index that aims to maximize the dividend yield of the index portfolio. The index comprises 25 shares from the HDAX index which have the highest expected dividend yield.

1.10 DAXplus Risk Trigger Germany

DAXplus® Risk Trigger Germany measures the performance of the DAX index, but limits the losses in bear markets by shifting the equity investment into a money market investment in times of extreme volatilities. The investment is shifted back into equities once the volatility level is lower.

1.11 Dividend Points Indices

The indices DAX® Dividend Points and DivDAX® Dividend Points measure the dividend component of the underlying indices DAX and DivDAX. The Dividend Points indices reflect the absolute income of the portfolio and not the performance of the portfolio itself as indices usually do. With these indices, it is possible to separate the dividend component and the inherited risk, such that the dividend effect can be hedged with short equity positions in DAX or DivDAX.

1.12 DAXplus Family

The DAXplus Family index measures the performance of founder-dominated companies (“family enterprises”) that are listed at the Frankfurt Stock Exchange (FWB®). The DAXplus Family Index was developed in cooperation with the Centre for Entrepreneurial and Financial Studies (CEFS) at Technische Universität München (TUM). The review of the index composition is performed annually in March by STOXX Ltd. based on shareholder structure information provided by Marketline.

1.13 DAX Risk Control Indices

A target volatility concept is applied to the DAX® (TR) Index. Whereas the risk profile of the DAX Index is the uncontrolled outcome of the existing market-cap weighted index concept, the Risk Control Indices control for risk by aiming at target volatilities of 5%, 10%, 15%, 20%. In order to control for
risk, the index shifts between a risk-free money market investment (measured via EONIA\(^1\)) and an Equity investment (represented by the DAX\(^\circledast\) Index).

1.14 **Currency-Hedged Indices**

The Hedged Indices are an innovative investment tool that measures the performance of the underlying index while at the same time eliminating foreign currency fluctuations. The currency-hedged indices eliminate the risk of the currency fluctuations at the cost of potential currency gains. STOXX Ltd. offers two versions of currency-hedged indices: one that resets the hedge notional and the currency exposure on a daily basis and one that resets both on a monthly basis.

1.15 **DAXplus 30 Decrement 40 Index**

The DAXplus 30 Decrement 40 index replicates the returns of an investment into the underlying index with a constant markdown expressed in index points, accruing on a daily basis.

While the DAXplus 30 Decrement 40 has lower returns than the underlying DAX (TR) by construction, it may perform better than the DAX (PR) index, provided that the dividend points not reinvested in the DAX (PR) exceed, on an equivalent annual basis, the decrement amount.

For information regarding the underlying DAX index cf. “Guide to the DAX Equity Indices”.

1.16 **idDAX 50 Equal Weight Index**

The idDAX\(^\circledast\) 50 Equal Weight Index tracks the performance of the 50 largest and most liquid companies from the German stock market. It includes all stocks from the DAX\(^\circledast\) index (30) completed with the 20 most liquid companies from the Prime Standard segment.

1.17 **idDAX 50 Equal Weight Decrement 4.00% Index**

The idDAX 50 Equal Weight Decrement 4.00% index replicates the performance of the idDAX 50 Equal Weight EUR index assuming a constant 4.00% performance deduction per annum. The performance deduction accrues constantly on a daily basis.

Consequently, due to the percentage of performance being subtracted, the decrement index is underperforming the standard net return index. The decrement index may perform better than the standard price index that does not consider dividend investments as long as the overall net dividend yield of the base index is greater than the value being subtracted.

The base index is the idDAX 50 Equal Weight Net Return EUR Index (Sections 1.16 and 2.15).

1.18 **idDAX Leveraged/Short NC Indices**

The idDAX Leveraged / Short NC Index family is a daily leveraged index concept, that uses DAX\(^\circledast\) as the underlying and includes a market-driven gap risk factor. The difference between the existing daily

\(^{1}\) Calculated as the European short-term rate (€STR) + 8.5 bps.
leveraged framework is the gap risk factor that is included in the index calculation in order to account for hedging costs resulting from the overnight gap risk, hence the “Net of Cost (NC)” naming convention. The dividend adjustment reflects the amount lost due to taxes on capital gains while replicating the leveraged portfolio using derivatives.

1.19 DAX Equal Weight Index

The DAX® Equal Weight Index includes the same companies as the DAX® Index, with each company assigned the same weight.
2 Index Composition

The composition of strategy indices is based on the respective underlying trading strategy. Special characteristics are presented below.

2.1 DivDAX and DivMSDAX

DivDAX comprises those 15 companies with the highest dividend yield within the DAX® index, DivMSDAX those within the combined universe of MDAX and SDAX index. Moreover, the shares are required to show an average daily traded volume of 250,000€ over the past three months. Historical dividend yields are calculated by dividing distributed dividends by the closing price of the respective share on the day preceding the ex date.

The 15 DivDAX® and DivMSDAX component issues are re-determined each September. Hence, the index composition will generally change once a year. If an index member publicly announces that it will not pay dividends at the upcoming dividend date, it will be removed from the index at the next rebalancing date. It will be replaced by the next company on the ranking list, that has not ceased dividend payments itself. If no replacement exists, the company will be removed from the index without replacement. If there is no rebalancing date between the announcement and the previously planned payout date the change will be executed with two full trading days notice following the announcement.

The index weighting is based on the free float market capitalization\(^2\), whereby the maximum weighting per share is capped at 10 percent. This cap is designed to prevent individual shares from dominating the index.

All index members are also included in a blue-chip index, thus ensuring high liquidity.

Rebalancing takes place on a quarterly basis, in line with the methodology applied to DAX.\(^3\)

The base is 17 September 1999, with a base value of 100.

The indices are calculated both as a price and as a performance index. They are calculated every 15 seconds, using the last available Xetra\(^8\) price data for companies quoted in the Prime Standard segment. DivDAX and DivMSDAX use the values of the constituent elements (applying currency conversion, if necessary) in calculation its index value and is expressed in Index points, reflecting the index-specific currency. The intraday currency conversion is based on the spot rates provided by Refinitiv previously Financial and Risk business of Thomson Reuters. The WM/Reuters currency fixing rates from 5:00 pm CET are used to calculate the indices’ closing values. DivDAX and DivMSDAX are available in the currencies set forth in the Vendor Code Sheet which is available under https://www.dax-indices.com/ressourcen.

\(^2\) Cf. free float definition in *Guide to the DAX Equity Indices*.

\(^3\) Cf. „Guide to the DAX Equity Indices “.
2.2 DAXplus Seasonal Strategy

The index comprises the 30 component issues of the German blue-chip DAX® index.

Similar to DivDAX®, the index weighting is based on the free float market capitalization, but with the maximum weighting per share capped at 10 percent\(^4\).

The base date of DAXplus® Seasonal Strategy is 30 December 1987, with a base level of 1000.

Chaining takes place on a quarterly basis, in line with the methodology applied to the DAX.

The special feature of DAXplus Seasonal Strategy index is that the index value is frozen on the last trading day in July, and is not changed until the last trading day in September. The period between is referred to as the ‘de-investment phase’. Starting with the first trading day in October, the index will again be calculated on the basis of the then current DAX composition.

Outside the de-investment phase during August and September, the index is calculated every 15 seconds, using the last available Xetra® price data for companies quoted in the Prime Standard segment. DAXplus Seasonal Strategy index uses the values of the constituent elements (applying currency conversion, if necessary) in calculation its index value and is expressed in Index points, reflecting the index-specific currency. The intraday currency conversion is based on the spot rates provided by Refinitiv previously Financial and Risk business of Thomson Reuters.. The WM/Reuters currency fixing rates from 5:00 pm CET are used to calculate the index’s closing values. DAXplus Seasonal Strategy index is available in the currencies set forth in the Vendor Code Sheet which is available under https://www.dax-indices.com/ressourcen. DAXplus Seasonal Strategy is calculated both as a price and as a performance index.

2.3 DAXplus Export Strategy

The index composition is updated once a year, on the chaining date in September. Ten component issues of the DAX® and MDAX® indices are chosen, selecting those companies that, within each index, have derived the highest proportion of their revenues outside Germany (based on figures disclosed in their annual reports for the preceding business year). The Banks and Financial Services sectors are not considered for this index.

The index is weighted according to free-float market capitalization, where the maximum weight assigned per component is capped at 10% at rebalancing. Since the index has a fixed number of components of 10, the outcome of this is the equal weighting of all index constituents.

The base date of DAXplus® Export Strategy is 18 March 2002, with a base level of 100.

DAXplus Export Strategy is calculated both as a price and as a performance index. The price index is calculated every 15 seconds and the performance index end of day, using the last available Xetra® price data for companies quoted in the Prime Standard segment. DAXplus Export Strategy index uses

\(^4\) As of the chaining day in September 2006 the cap limit of DAXplus Seasonal Strategy was lowered to 10 percent.
the values of the constituent elements (applying currency conversion, if necessary) in calculation its index value and is expressed in Index points, reflecting the index-specific currency. The intraday currency conversion is based on the spot rates provided by Refinitiv previously Financial and Risk business of Thomson Reuters.. The WM/Reuters currency fixing rates from 5:00 pm CET are used to calculate the indices’ closing values. DAXplus Export Strategy index is available in the currencies set forth in the Vendor Code Sheet which is available under https://www.dax-indices.com/ressourcen.

2.4 DAXplus Covered Call

DAXplus® Covered Call index combines the DAX® index and a DAX call option.

The base date of DAXplus Covered Call is the 31 December 1992, with a base level of 100.

The index composition is adjusted on a monthly basis. On each third Friday of the month, a new front-month call option is determined, which will be used to calculate the index until their last trading day, at 1.00 p.m. CET.

On normal trading days, the DAXplus Covered Call index is calculated every 60 seconds, between 9.00 a.m. and 5.45 p.m. CET; on option rollover dates, only from 9.00 a.m. to 1.00 p.m. CET. The calculation is based on the last available Xetra® (stocks) and Eurex® (options) price data (Section 3.2.4). DAXplus Covered Call index uses the values of the constituent elements (applying currency conversion, if necessary) in calculation its index value and is expressed in Index points, reflecting the index-specific currency. The intraday currency conversion is based on the spot rates provided by Refinitiv previously Financial and Risk business of Thomson Reuters. The WM/Reuters currency fixing rates from 5:00 pm CET are used to calculate the index’s closing values. DAXplus Covered Call index is available in the currencies set forth in the Vendor Code Sheet which is available under https://www.dax-indices.com/ressourcen.

2.5 Leveraged and Short Indices

Leveraged indices are linked to the changes of blue-chip index DAX®, applying a positive leverage factor to DAX movements. Therefore, investing in leveraged indices yields x-fold the performance of DAX, compared to the closing level from the last day of calculation. Short Indices are linked to the inverse movement of blue-chip index DAX® (TecDAX®) (Section 3.3.1).

The adjustment of leverage takes place daily or (in case of monthly adjustment) on each third Friday of a month.

The base date of the leveraged indices is 30 December 1987, with a base value of 1,000, analogous to DAX index. The base date of the short indices is 29 December 2006, with a base value of 6,596.92, analogous to the closing value of the DAX index (748,32 analogous to the closing value of the TecDAX index) on that day.

The leveraged and short indices based on underlyings which are calculated real time, are also calculated in real time every 15 seconds between 9.00 a.m. and 5.45 p.m. based on DAX (TecDAX) (performance index). The calculation and dissemination of the LevDAX x3 and ShortDAX x3 indices, that are calculated realtime, starts at 09:05 a.m. CET.
2.6 DAXplus Protective Put

The DAXplus® Protective Put index combines the DAX® index and a DAX put option.

The base date of DAXplus Protective Put is 31 December 1992, with a base level of 100.

The index composition is adjusted on a quarterly basis. On third Friday in March, June, September and December, a new put option is determined, which will be used to calculate the index until the last trading day, at 1.00 p.m. CET for the following three months.

On normal trading days, the DAXplus Protective Put index is calculated every 60 seconds, between 9.00 a.m. and 5.45 p.m. CET; on option rollover dates, only from 9.00 a.m. to 1.00 p.m. CET. The calculation is based on the last available Xetra® (stocks) and Eurex® (options) price data (Section 3.2.4). DAXplus Protective Put index uses the values of the constituent elements (applying currency conversion, if necessary) in calculation its index value and is expressed in Index points, reflecting the index-specific currency. The intraday currency conversion is based on the spot rates provided by Refinitiv previously Financial and Risk business of Thomson Reuters. The WM/Reuters currency fixing rates from 5:00 pm CET are used to calculate the indices’ closing values. DAXplus Protective Put index is available in the currencies set forth in the Vendor Code Sheet which is available under https://www.dax-indices.com/ressourcen.

2.7 DAXplus Minimum Variance Germany

DAXplus Minimum Variance Index is based on the composition of the DAX Index.

The base date of DAXplus Minimum Variance Germany is the 21 September 2001, with a base level of 100.

The chaining takes place on a quarterly basis (i.e. on the third Friday of the last month of a quarter). The optimal weights are calculated as described in chapter 3.4.1. In this context, it can occur that for some constituents, the optimization can result in weight of 0.00 percent. These constituents won’t be considered in the index. For the portfolio variance calculation, the index uses daily stock returns over the last twelve months (cf. chapter 3.4.1).

The date, from which the daily returns are considered for the portfolio variance calculation, depends on the chaining date and is updated quarterly. Between two chaining dates the weighting factors q_{IT}, that are derived out of the weights (cf. chapter 3.4.2) are kept constant.

DAXplus Minimum Variance Germany is calculated as performance and price index in real time every 15 seconds, between 9.00 a.m. and 5.45 p.m. CET in Euro, US-Dollar and British Pound. The calculation is based on the last available Xetra® price data. DAXplus Minimum Variance Germany uses the values of the constituent elements (applying currency conversion, if necessary) in calculation its index value and is expressed in index points, reflecting the index-specific currencies. The intraday currency conversion is based on the spot rates provided by Refinitiv previously Financial and Risk business of Thomson Reuters. The WM/Reuters currency fixing rates from 5:00 pm CET are used to calculate the indices’ closing values.
2.8 DAXplus Maximum Sharpe Ratio Germany

DAXplus® Maximum Sharpe Ratio Germany is based on the composition of the DAX®-Index, where weights are derived from an optimization that seeks to maximize the portfolio Sharpe ratio.

The base date of DAXplus Maximum Sharpe Ratio Germany is the 21 September 2001, with a base level of 100.

The chaining takes place on a quarterly basis (i.e. on the third Friday of the last month of a quarter). The weightings are calculated in line with the methodology applied to DAXplus Minimum Variance Germany (cp. chapters 2.7 and 3.4.1). Between two chaining dates the weighting factors q_{it} which are derived out of the weight (cp. chapter 3.4.2) are kept constant.

DAXplus Maximum Sharpe Ratio Germany is calculated as performance and price index in real time every 15 seconds, between 9.00 a.m. and 5.45 p.m. CET in Euro, US-Dollar and British Pound. The calculation is based on the last available Xetra® price data. DAXplus Maximum Sharpe Ratio Germany uses the values of the constituent elements (applying currency conversion, if necessary) in calculation its index value and is expressed in index points, reflecting the index-specific currencies. The intraday currency conversion is based on the spot rates provided by Refinitiv previously Financial and Risk business of Thomson Reuters. The WM/Reuters currency fixing rates from 5:00 pm CET are used to calculate the indices’ closing values.

2.9 DAXplus Maximum Dividend

The index consists of the 25 companies in the HDAX Index, which have the highest expected dividend yield and will pay a dividend within the forthcoming adjustment period. The expected dividend yield will be determined by the announced and the estimated dividend amount and the closing price of the stock at the time of selection.

The ordinary review of the index composition is conducted twice a year in May and November based on data from cut-off dates end of April and end of October. The review results are implemented at the 2nd Friday in May and November and become effective with start of trading on the following trading day. The HDAX® companies which will pay a dividend within the upcoming six months are eligible for inclusion. In addition companies must be among the 75% largest companies in terms of free float Market Cap and the 65% most liquid companies in terms of 3 month average-daily-trading-volume in HDAX®. This ensures a high liquidity of the index. If less than 25 companies meet the above named criteria, the index portfolio will be supplemented by the companies with the highest dividend yield from the previous period. By default, these supplementing companies will inherit the smallest dividend yield value available within the composition of the current period.

If a member of the DAXplus Maximum Dividend index leaves the HDAX index or publicly announces that it will not pay a dividend on the following scheduled dividend date, it will be removed extraordinarily from the index. The replacement is determined as the best candidate on the most recent ranking list that has not cancelled its dividend distribution, will pay a dividend until the next regular rebalancing and meets the additional index criteria. If no replacement candidate exists, no
action will be taken. The extraordinary review of the index composition will become effective on the trading day following the 2nd Friday of a month.

The constituents of the index are weighted proportionally to their expected dividend yield: the higher the dividend yield, the higher the weight in the index. The maximum weight of a company is subject to a double capping mechanism. In a first step, the maximum weight is capped to 10 percent. This procedure prevents that single issues dominate the index. Then, a liquidity test is conducted based on a reference portfolio with a notional amount of EUR 1bn. A component passes the test if the amount to be allocated does not exceed 2.5-times of the average-daily-trading volume of the company. A breach of this threshold leads to a weight capping equal to 2.5-times of the company’s 3-month ADTV value.

The base date of DAXplus® Maximum Dividend Index is 21 May 1999 with an index level of 100.

DAXplus Maximum Dividend is calculated as price, performance and net return index. The calculation is performed every 15 seconds on the basis of the last available Xetra prices. DAXplus Maximum Dividend uses the values of the constituent elements (applying currency conversion, if necessary) in calculation of its index value and is expressed in Index points, reflecting the index-specific currency. The intraday currency conversion is based on the spot rates provided by Refinitiv previously Financial and Risk business of Thomson Reuters. The WM/Reuters currency fixing rates from 5:00 pm CET are used to calculate the indices’ closing values. DAXplus Maximum Dividend is available in the currencies set forth in the Vendor Code Sheet which is available under https://www.dax-indices.com/ressourcen.

2.10 DAXplus Risk Trigger Germany

The index concept of DAXplus® Risk Trigger Germany is based on the premise that share price increases generally happen slowly and steadily, i.e. with low volatility, whereas decreases mostly happen very quickly, displaying a much higher volatility. High volatility is equated to a high level of risk.

If the 10-day volatility of the equity indices underlying the DAXplus Risk Trigger Indices exceeds a certain threshold, the investment is reallocated in its entirety to the money market (eb.rexx Money Market Index). Reinvestment in the equity portfolio will not take place until the volatility level has fallen below a defined lower limit.

The base date of DAXplus Risk Trigger Germany is the 30 December 1987, with a base level of 1,000.

2.11 Dividend Points Indices

DAX® Dividend Points and DiVDAAX® Dividend points reflect the income resulting from regular and special dividends of the companies included in the respective underlying index. These distributions are accumulated for the entire index portfolio and hence measure the income of the current year in index points. The Dividend Points indices are reset to zero on the regular chaining date of the underlying indices in December (under Section 3.7).
The indices are calculated and published once a day.

2.12 **DAXplus Family**

The DAXplus Family index is an all-share index that comprises all companies listed in the Prime Standard segment at the Frankfurt Stock Exchange and meet the specific selection criteria for family enterprises. For this concept, Family enterprises are characterized by the following two attributes:

- **Family Ownership**
 The group of index relevant people is a major shareholder of the company, i.e. it holds at least 25 percent of all ordinary shares

and/or

- **Family Management**
 The group of index relevant people holds at least 5 percent of the ordinary shares and is member of the company management (management or supervisory board).

The group of index relevant people consists of founders (both single founders and teams of founders) of the company and their families.

In a broader sense the group of index relevant people is also assigned such shares that are being held indirectly by an asset management, investment or holding company, in case these are owned or controlled by the group of index relevant people.

In addition, with the DAXplus Family 30 index a liquid selection index is being calculated that comprises the 30 largest family enterprises (according to free float market capitalization) which have an average daily trading volume of at least €500,000 over the preceding three months at the time of index review.

The base date of the DAXplus Family indices is 21 June 2002 with a base value of 1000.

The composition of the index is reviewed on an annual basis in March. The index weighting is based on the free float market capitalization of the shares. The weight of an underlying is limited to a maximum of 10 percent.

The DAXplus Family indices are calculated continuously every 60 seconds from 9 a.m. to 5:45 p.m. as total return index, the price indices are computed once a day at market close. The calculation is based on the last available Xetra® prices. DAXplus Family indices use the values of the constituent elements (applying currency conversion, if necessary) in calculation its index value and is expressed in index points, reflecting the index-specific currency. The intraday currency conversion is based on the spot rates provided by Refinitiv previously Financial and Risk business of Thomson Reuters. The WM/Reuters currency fixing rates from 5:00 pm CET are used to calculate the indices’ closing values. DAXplus Family indices are available in the currencies set forth in the Vendor Code Sheet which is available under https://www.dax-indices.com/ressourcen.
2.13 DAX Risk Control Indices

In order to control for risk, the index shifts between a risk free money market investment (measured via EONIA and provided to STOXX Ltd. by Refinitiv (previously Financial and Risk business of Thomson Reuters.)) and a risky part (measured by the DAX® Index, cf. regarding the DAX® Index “Guide to the DAX Equity Indices”). The asset allocation is reviewed on a daily basis.

If on a daily basis the risk of the current DAX Risk Control Index composition is below the targeted risk of 5% (10%, 15%, 20%), the allocation will be adjusted towards the risky asset, in case the current risk profile is above the targeted 5% (10%, 15%, 20%), the allocation will be adjusted towards the risk free component (EONIA).

To avoid extreme leveraged positions, a maximum exposure of 150% towards the risky asset is introduced. Furthermore, a tolerance level of 5% around the target weight is implemented to avoid high allocation turnover due to minimal deviations from the targeted risk.

2.14 Currency-Hedged Indices

The Currency-Hedged Indices combine an investment in the underlying, unhedged index with a short position in currency forwards: profits (losses) deriving from the appreciation (depreciation) of the foreign denomination currency of the constituents are offset by losses (profits) from the currency forward hedge.

The spot and forwards rates are taken from WM Fixings. The intraday currency conversion is based on the spot and forward rates provided by Refinitiv previously Financial and Risk business of Thomson Reuters. The WM/Reuters spot and forward currency fixing rates from 5:00 pm CET are used to calculate the indices’ closing values. The Currency Hedged Indices are available in the currencies set forth in the Vendor Code Sheet which is available under https://www.dax-indices.com/ressourcen.

For monthly hedged indices, the total hedge amount and the allocation to the individual underlying currencies (where applicable) is reset at the end of the month; for daily hedged indices, the adjustments occur every day.

2.15 idDAX 50 Equal Weight Index

The idDAX 50 Equal Weight Index uses the compositions of the DAX index and completes it with the 20 companies with highest turnover from the Prime Standard segment as reported in the DAX Selection Indices ranking list.

The sum of the turnover determined on the FWB Frankfurt Stock Exchange for the respective share classes of a company is defined as the order book volume. The reporting date for collecting data is the last trading day of the month for which the ranking list is created. The ranking list is created and published monthly by STOXX Ltd. For more information about the DAX Selection indices, please consult Section 4 of the Guide to the DAX Equity Indices.

All components are equally weighted. Between two chaining dates the weighting factors \(q_{it} \) which are derived out of the weight (cp. Chapter 3.4.2) are kept constant.
The base date of idDAX 50 Equal Weight is the 21 March 2005, with a base level of 100.

Chaining takes place on a quarterly basis, in line with the methodology applied to the DAX (cf. Guide to the DAX Equity Indices).

The idDAX 50 Equal Weight index is calculated as performance (net and gross return) and price index in real time every 1 seconds, between 9.00 a.m. and 5.45 p.m. CET in Euro. The calculation is by default based on Xetra price data. idDAX 50 Equal Weight index uses the values of the constituent elements (applying currency conversion, if necessary) in calculation its index value and is expressed in index points, reflecting the index-specific currency. The intraday currency conversion is based on the spot rates provided by Refinitiv previously Financial and Risk business of Thomson Reuters. The WM/Reuters currency fixing rates from 5:00 pm CET are used to calculate the indices’ closing values.

idDAX 50 Equal Weight index is available in the currencies set forth in the Vendor Code Sheet which is available under https://www.dax-indices.com/ressourcen.

The idDAX 50 Equal Weight index is subject to Extraordinary Index Review as any other Selection Index as described in section 5 of the Guide to the DAX Equity Indices. A deleted company is replaced by the highest turnover company from the last ranking list.

2.16 idDAX Leveraged/Short NC Indices

idDAX Leveraged/Short NC indices are linked to the changes of blue-chip index DAX®. For the leveraged indices a positive leverage factor applies. Therefore, investing in leveraged indices yields x-fold the performance of DAX® net of taxes paid on regular and special dividends, compared to the closing level from the last day of calculation. Short Indices are linked to the inverse movement of blue-chip index DAX®.

The adjustment of leverage takes place daily. Rebalancing of the indices takes place on every third Friday of a month. The base date of the idDAX Leveraged/Short NC indices is 15 Jun 2012, with a base value of 1,000. The idDAX Leveraged/Short NC indices are calculated real time every second between 9.00 a.m. and 5.45 p.m. derived from DAX® calculation times (Section 3.14 and the Guide to the DAX Equity Indices).

STOXX sources EONIA and EURIBOR rates from Refinitiv previously Financial and Risk business of Thomson Reuters.

2.17 DAX Equal Weight Index

The DAX® Equal Weight Index has the identical composition as the DAX® Index at all times. All companies are equally weighted on the regular quarterly review date. Between two chaining dates the weighting factors which are derived from the weight are kept constant.

For replacements between regular chaining events the newly added company is assigned the weight of the deleted one.

The base date of DAX® Equal Weight Index is 21 September 2018 with an index level of 1,000. Chaining takes place on a quarterly basis, in line with the DAX® methodology.
The DAX® Equal Weight Index is calculated as price, performance and net return index in EUR and USD. DAX® Equal Weight Index uses the values of the constituent elements (applying currency conversion, if necessary) in calculation of the index value and is expressed in index points, reflecting the index-specific currency. The intraday currency conversion is based on the spot rates provided by Refinitiv previously Financial and Risk business of Thomson Reuters. The WM/Reuters currency fixing rates from 5:00 pm CET are used to calculate the indices’ closing values.
3 Calculation

The calculation of the indices described in this document is based on several formula defined in the following. The adjustment of price-relevant capital changes as well as the calculation of implied changes in the correction factor c_{it} are described in chapter 4.

3.1 DivDAX, DivMSDAX, DAXplus Seasonal Strategy and DAXplus Export Strategy

3.1.1 Index Formulas

The indices are conceived according to the Laspeyres formula set out below:

A. DivDAX® and DAXplus® Export Strategy

$$\text{Index}_i = K_T \cdot \sum_{i=1}^{n} \frac{p_{it} \cdot q_{iT} \cdot ff_{iT} \cdot c_{it}}{\sum_{i=1}^{n} p_{i0} \cdot q_{i0}} \cdot \text{Base}$$

B. DAXplus® Seasonal Strategy

$$\text{Index}_i = \begin{cases}
K_T \cdot \frac{\sum_{i=1}^{n} p_{it} \cdot q_{iT} \cdot ff_{iT} \cdot c_{it}}{\sum_{i=1}^{n} p_{i0} \cdot q_{i0}} \cdot \text{Base} ; & \text{October until July} \\
\text{Index}_j ; & \text{August and September}
\end{cases}$$

whereby:

$c_{it} =$ Adjustment factor of company i at time t

$ff_{iT} =$ Free-float factor of share class i at time T

$n =$ Number of shares in the index

$p_{i0} =$ Closing price of share i on the trading day before the first inclusion in the index

$p_{it} =$ Price of share i at time t
The formula set out below is equivalent in analytic terms, but designed to achieve relative weightings:

\[
\text{Index}_i = \frac{\sum_{i=1}^{n} p_i \cdot (K_T \cdot \frac{\sum_{i=1}^{n} q_{iT}}{\sum_{i=1}^{n} q_{i0}} \cdot 100 \cdot c_i)}{\sum_{i=1}^{n} p_i \cdot \frac{q_{i0}}{\sum_{i=1}^{n} q_{i0}} \cdot 100} \cdot \text{Base} = \frac{\sum_{i=1}^{n} p_i \cdot F_i}{A} \cdot \text{Base}
\]

whereby: \(A = \sum_{i=1}^{n} p_i \cdot \frac{q_{i0}}{\sum_{i=1}^{n} q_{i0}} \cdot 100 \)

and: \(F_i = K_T \cdot \frac{\sum_{i=1}^{n} q_{iT}}{\sum_{i=1}^{n} q_{i0}} \cdot 100 \cdot c_i \)

Index calculation can be reproduced in simplified terms by using the expression \(F_i \):

- Multiply the current price by the respective \(F_i \) weighting factor;
- take the sum of these products; and
- divide this by the base value (\(A \)) which remains constant until a modification in the index composition occurs.

The \(F_i \) factors provide information on the number of shares required from each company to track the underlying index portfolio.
3.1.2 Computational Accuracy

The K_t chaining factors are used and published as figures rounded to seven decimal places.

The c_t adjustment factors are included in the index formula on the basis of six decimal places.

In the event of several adjustment events coinciding, such as “ex-dividend” and “ex subscription right” markdowns on the same day, only one single adjustment factor (six decimal places) is computed using the total markdown. Where several adjustment events are required for a single share but at different times, the factors rounded that way are multiplied by each other, and the product is rounded to six decimal places again.

When determining the c_t adjustment factor for subscription rights, the rights value is used as a figure with two decimal places. Only in the case of a capital increase out of company reserves, such rights value is not rounded at all. If a dividend disadvantage has to be prorated (e.g. for three months), the value of such disadvantage used for index calculation is rounded to two decimal places.

The free-floating factors are used as figures rounded to four decimal places.

The indices are rounded to two decimal places and published accordingly. The F_t factors are rounded to five decimal places and published accordingly, changing with each share-specific adjustment.

3.1.3 Cap Limit

On the day of regular quarterly chaining, the weighting of any single company in DivDAX®, DAXplus® Export Strategy and in DAXplus® Seasonal Strategy is capped to 10 percent of the index capitalization, respectively.

For this purpose, the index capitalization is computed using the total number of all freely available shares. If any single class of shares accounts for a share of more than i.e. 10 percent in the respective capitalization, the number of shares used as weight for that company is reduced to 10 percent of the index capitalization (which is being reduced accordingly). Should yet another company exceed the cap limit after that, the capitalization is to be determined with which both companies would account for exactly 10 percent of the revised index capitalization. This procedure is repeated for as long as there is no company exceeding the respective cap limit. Then the next smaller integer of shares resulting in the desired capitalization is used as the new weight for calculating the index.

Where the capped share of a company falls or rises below or above 10 percent during the quarter, it may only be raised or lowered to 10 percent again on the following chaining date as the above-described procedure is repeated for every single chaining process.

3.1.4 New Listings and Deletions

Regular modifications to the index composition only occur if the ordinary chaining coincides with the actualization of the index composition at the same time. This process is based on the criteria as set out in: “Guide to the DAX Equity Indices”.

www.dax-indices.com
3.1.5 Chaining

Dividend payments and capital changes are initially reflected through an adjustment of the respective \(c_{it} \) adjustment factors. Quarterly chaining is carried out on the maturity date of the various equity index futures of Eurex, implying that on this day (i.e. on the third Friday of the last month of a quarter), the index is calculated for the last time on the basis of weights valid up to that point. Chaining is based on the Xetra\textsuperscript® closing prices established on that day, with the new weights to be applied as from the following trading day.

A change in the index composition also becomes necessary in the event of an index component issue being or becoming subject to extraordinary circumstances, such as deletion, composition proceedings, bankruptcy, new admission, etc.

3.1.6 Ordinary Chaining

The ordinary chaining procedure takes place on a quarterly basis and encompasses the following measures:

- The number of shares and the respective free-float-factors are updated in accordance with the capital changes carried out.

- The accumulated income from distributions and capital changes is allocated to the index component issues according to the respective new weights. For this purpose, the individual \(c_{it} \) adjustment factors are set to 1.

- A chaining factor is calculated to avoid a gap in the respective index.

If the ordinary chaining coincides with the update of the index composition at the same time, a change of the composition takes place additionally.

These measures help to prevent the weighting scheme from “ageing” due to capital changes and the accumulation of income.

Chaining is carried out in three steps:

a) *Calculation of the index value on the chaining date according to the old weighting scheme*

The following applies accordingly:

\[
\text{Index}_t = \frac{\sum_{i=1}^{n} p_{it} \cdot ff_{it} \cdot q_{it} \cdot c_{it}}{\sum_{i=1}^{n} p_{i0} \cdot q_{i0}} \cdot \text{Base}
\]

This value corresponds to the closing index published on the date of chaining, and is used with two decimal places (as published) for all subsequent calculations.
b) Computation of an interim value

The interim value is computed using the number of shares valid on the chaining date ($q_{i,T+1}$) and the current free-float factors ($ff_{i,T+1}$). The c_i adjustment factors are set to 1.

The following applies accordingly:

$$\text{Interim value} = \frac{\sum_{i=1}^{n} p_{i0} \cdot ff_{i,T+1} \cdot q_{i,T+1}}{\sum_{i=1}^{n} p_{i0} \cdot q_{i0}} \cdot \text{Base}$$

The interim value is used as an exact figure for subsequent calculations.

c) Calculation of the new chaining factor

The following applies accordingly:

$$K_{T+1} = \frac{\text{Index}_T}{\text{Interim value}}$$

After chaining, the index is computed on the basis of the new chaining factor (K_{T+1}).

After calculation of the chaining factor, capital changes and dividend payments due on the date of chaining are taken into account via the c_i factor.

The F_i weighting factors of the index formula based on relative weights are calculated as follows:

$$F_i = K_{T+1} \cdot \frac{ff_{i,T+1} \cdot q_{i,T+1} \cdot c_i}{\sum_{i=1}^{n} q_{i0}} \cdot 100$$

3.1.7 Unscheduled Chaining

In the event of a change in the index composition, chaining is carried out in line with the procedure described in section 3.1.6 above, however, without adjustment to the number of shares and the various c_i factors. Newly included issues are taken into account with their respective current number of shares.

Computation of the interim value is based on the component issues of the revised index portfolio.

$$\text{Interim value} = \frac{\sum_{i=1}^{n} p_{iT} \cdot ff_{iT} \cdot q_{iT} \cdot c_i}{\sum_{i=1}^{n} p_{i0} \cdot q_{i0}} \cdot \text{Base}$$
With the new chaining factor to result as

\[K_{t+1} = \frac{\text{Index}_t}{\text{Interim value}} \]

If a newly included company was not listed in the Frankfurt Stock Exchange's Prime Standard or General Standard segments on the base date, the number of shares \((q_{i0})\) and the price \((p_{i0})\) must be sourced from the Third Segment (Open Market – OTC market) as per that base date. If the company was not listed in Frankfurt at all, the corresponding figures from the respective domestic exchange are used for the index calculation instead. If the company was not listed at all on the base date of the index, the basis number of shares \((q_{i0})\) corresponds to the number of shares at the time of admission to trading. The basis price \((p_{i0})\) is the first price available at the time of such admission.

3.2 DAXplus Covered Call and DAXplus Protective Put

3.2.1 Index Formulas

A. DAXplus Covered Call

On Xetra® trading days DAXplus® Covered Call is calculated as follows:

\[CC_t = \frac{\text{DAX}_t - C_t}{\text{DAX}_s - C_0} \cdot CC_s \]

The rolling is carried out monthly on every third Friday.

\[CC_s = \frac{\text{DAX}_s - C'_s}{\text{DAX}_{s-m} - C'_0} \cdot CC_{s-m} \]

whereby:

- \(CC_t\) = covered call index at time \(t\)
- \(CC_s\) = settlement value of covered call index at last rolling day
- \(CC_{s-m}\) = settlement value of covered call index at previous rolling day
- \(\text{DAX}_t\) = last price of DAX® at time \(t\)
- \(\text{DAX}_s\) = settlement price of DAX at last rolling day
- \(\text{DAX}_{s-m}\) = settlement price of DAX at previous rolling day
- \(C_t\) = last price of call option at time \(t\)
- \(C_0\) = inclusion price of new call option at last rolling day
- \(C'_s\) = settlement price of old call option at last rolling day
- \(C'_0\) = inclusion price of old call option at previous rolling day
B. DAXplus Protective Put

On Xetra® trading days DAXplus® Protective Put is calculated as follows:

\[PP_t = \frac{DAX_t + P_t}{DAX_s + P_0} \cdot PP_s \]

The rolling is carried out on third Friday at the end of each quarter.

\[PP_s = \frac{DAX_s + P_s}{DAX_{s-m} + P'_0} \cdot PP_{s-m} \]

whereby:

- \(PP_t \) = protective put index at time \(t \)
- \(PP_s \) = settlement value of protective put index on last rolling day
- \(PP_{s-m} \) = settlement value of protective put index one rolling before
- \(DAX_t \) = last price of DAX® before time \(t \)
- \(DAX_s \) = settlement price of DAX on last rolling day
- \(DAX_{s-m} \) = settlement price of DAX one rolling before
- \(P_t \) = last price of put option before time \(t \)
- \(P_0 \) = inclusion price of new put option on last rolling day
- \(P'_s \) = settlement price of old put option on expiry day
- \(P'_0 \) = inclusion price of old put option one rolling before

3.2.2 Computational Accuracy

DAX®, DAX Call Option, DAX Put Option, DAXplus® Covered Call index and DAXplus® Protective Put index are published as figures rounded to two decimal places.

3.2.3 Rolling

DAXplus® Covered Call requires a monthly rollover operation, whereby the old call option ceases trading at 1.00 p.m. CET on the pre-determined rollover date, and is replaced by a new option whose last trading day falls on the next rollover date. The new call option must have a remaining lifetime of one month, and must be 5 percent out of the money (i.e. the highest strike price below or equal to the DAX® settlement price plus 5 percent).
The DAXplus Protective Put requires a quarterly rollover operation, whereby the old put option ceases trading at 1.00 p.m. CET on the pre-determined rollover date, and is replaced by a new put option whose last trading day falls on the next rollover date. The new option must have a remaining lifetime of three months, and must be 5 percent out of the money (i.e. the lowest strike price above or equal to the DAX settlement price minus 5 percent).

The prices at which the call- and put options are included in the respective index are based on the weighted averages of all best bids for call options and best asks for put options quoted on Eurex® between 1.15 p.m. and 1.45 p.m. CET.

3.2.4 Trading Interruption/Suspension

If there is any interruption/suspension of the DAX® index or the DAX call option which is included in DAXplus® Covered Call or DAX put option which is included in the DAXplus® Protective Put at any time then the index will be calculated with the latest prices which will be available.

If suspension occurs on a rolling day during the averaging process, only bids before the interruption/suspension will be considered.

In case averaging does not start at all (i.e. interruption/suspension starts before 1.15 p.m. CET) then the averaging will be delayed until the end of the interruption/suspension on the same index business day. 30 minutes after the end of the interruption/suspension the averaging will start and will then take 30 minutes.

If the interruption/suspension will continue until the end of trading then the averaging will be delayed until the next index business day at 1.15 p.m. CET.

3.3 Leveraged and Short Indices

3.3.1 Index Formula

Leveraged and short Indices are calculated as follows:

\[
\text{LevIDX}_t = \text{LevIDX}_T \cdot \left[1 + L \cdot \left(\frac{\text{IDX}_t}{\text{IDX}_T} - 1 \right) + \left((1 - L) \cdot \text{IR}_T + L \cdot c_m \right) \cdot \frac{d}{360} \right]
\]

Where:

- \(L \) = leverage factor
- \(\text{IDX} \) = reference index
- \(\text{IR} \) = interest rate:

 Daily Leverage Indices: \(\text{EONIA}^5 + (\text{EURIBOR (12M)} - 1Y \text{EONIA Swap Rate}) \)

5 The index will be calculated using EONIA that is published on day \(T \) in respect of day \(T-1 \).
Daily Short Indices: EONIA⁵
Monthly Leverage / Short Indices: EURIBOR (1M)

\[
c_M = \text{cost of borrowing (short indices)}
\]
\[
t = \text{time of calculation}
\]
\[
T = \text{time of last rebalancing (last trading day resp. third Friday)}
\]
\[
d = \text{number of calendar days between } t \text{ and } T
\]

The leverage term describes the effect of index movements on leveraged and short indices. The “finance term” indicates the costs caused by raising capital and reinvesting into the reference index portfolio. The “interest term” represents the additional interest generated by selling the reference index portfolio and the risk-free investment of the proceeds.

Euro Overnight Index Average (EONIA) is calculated as the European short-term rate (€STR) + 8.5 bps. From 1 January 1999 until 30 September 2019 it was the effective reference rate computed daily as a weighted average of all overnight unsecured lending transactions undertaken in the interbank market by European Central Bank since 1 January 1999. Before that, the daily interest provided by Deutsche Bundesbank has been used for calculation.

The Euro Interbank Offered Rate (EURIBOR) is a daily reference rate based on the averaged interest rates at which banks offer to lend unsecured funds to other banks in the euro wholesale money market (or interbank market). Prior to its introduction on 1 January 1999 Frankfurt Interbank Offered Rate (FIBOR) has been used.

The liquidity Spread (EURIBOR (12M) – 1Y EONIA Swap Rate) is updated on a monthly basis. It is determined using the average over the liquidity spreads of five index calculation days ranging from 5th last to the last calculation day prior to each monthly rebalancing date (3rd Friday). To calculate the liquidity spread, the closing values of the 1Y EONIA (swap rates) are taken.

The cost of borrowing will be updated on a monthly basis as described below:

\[
c_M = \sum w_{LM} \cdot c_{LM}
\]

Where:

\[
c_M = \text{Cost of borrowing the Index at time } M
\]
\[
c_{i,M} = \text{Cost of borrowing the share } i \text{ at time } M
\]
\[
w_{i,M} = \text{Index weight of share } i \text{ at time } M
\]

The data is provided by Data Explorers, the aggregator of stock lending information.

The following leveraged and short Indices are calculated:

<table>
<thead>
<tr>
<th>Index</th>
<th>Leverage factor L</th>
</tr>
</thead>
<tbody>
<tr>
<td>LevDAX<sup>®</sup> x2</td>
<td>2</td>
</tr>
<tr>
<td>LevDAX<sup>®</sup> x2 Monthly</td>
<td>2</td>
</tr>
</tbody>
</table>
3.3.2 Calculation of the optimal leverage factor

The optimal leverage factor L^* is determined every month based on the risk-return profile of the underlying index. Relevant factors are the growth rate of the underlying index and the volatility reflected by the VDAX-NEW index.

$$L^* = L^*_T = \min \left(4; \max \left(\frac{1}{2}, \frac{1}{2} + \frac{\mu - r}{\sigma^2} \right) \right)$$

where:

<table>
<thead>
<tr>
<th>Index</th>
<th>Leverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>LevDAX® x3</td>
<td>3</td>
</tr>
<tr>
<td>LevDAX® x4</td>
<td>4</td>
</tr>
<tr>
<td>LevDAX® x5</td>
<td>5</td>
</tr>
<tr>
<td>LevDAX® x6</td>
<td>6</td>
</tr>
<tr>
<td>LevDAX® x7</td>
<td>7</td>
</tr>
<tr>
<td>LevDAX® x8</td>
<td>8</td>
</tr>
<tr>
<td>LevDAX® x9</td>
<td>9</td>
</tr>
<tr>
<td>LevDAX® x10</td>
<td>10</td>
</tr>
<tr>
<td>ShortDAX®</td>
<td>-1</td>
</tr>
<tr>
<td>ShortDAX® x2</td>
<td>-2</td>
</tr>
<tr>
<td>ShortDAX® x2 Monthly</td>
<td>-2</td>
</tr>
<tr>
<td>ShortDAX® x3</td>
<td>-3</td>
</tr>
<tr>
<td>ShortDAX® x4</td>
<td>-4</td>
</tr>
<tr>
<td>ShortDAX® x5</td>
<td>-5</td>
</tr>
<tr>
<td>ShortDAX® x6</td>
<td>-6</td>
</tr>
<tr>
<td>ShortDAX® x7</td>
<td>-7</td>
</tr>
<tr>
<td>ShortDAX® x8</td>
<td>-8</td>
</tr>
<tr>
<td>ShortDAX® x9</td>
<td>-9</td>
</tr>
<tr>
<td>ShortDAX® x10</td>
<td>-10</td>
</tr>
<tr>
<td>ShortMDAX® x1</td>
<td>-1</td>
</tr>
<tr>
<td>ShortTecDAX</td>
<td>-1</td>
</tr>
<tr>
<td>LevDAX® Optimal</td>
<td>L^*</td>
</tr>
</tbody>
</table>
$$ r = \text{IR}_t $$

$$ \mu = \text{growth rate of the underlying index}, \mu = \left(\frac{IDX_T}{IDX_0} \right)^{\frac{365}{T-30.12.1987}} - 1 $$

$$ \sigma = \text{volatility of the underlying index}, \sigma = \frac{\text{VDAX - NEW}}{100} $$

3.3.3 Adjustments due to extreme market movements

Daily Leverage and Short Indices: If daily leveraged or short indices drop by more than 50 percent at the time of calculation t in comparison to the closing prices on the last adjustment day T then the leverage will be adjusted. During the adjustment those prices are considered which are received at time t. No additional refinancing costs ("Financing Term") are calculated and no additional interests are credited ("Interest Term").

The rebalancing will be carried out by simulating a new day:

$$ t := T \text{ (i.e. IDX}_T = IDX_t \text{ and LevIDX}_T = \text{LevIDX}_t) $$

$$ d := 0 $$

Daily Leverage and Daily Short AR Indices: The rebalancing is based on the average overall index values that occur in a time window of 10 minutes. The time window to calculate the average starts 5 minutes after and ends 15 minutes after the trigger event occurs. The rebalancing is triggered when the underlying index loses more than $x\%$ (leverage indices) or appreciates by more than $x\%$ (short indices) compared to its previous day’s close.

The respective trigger values (x) are given in the following table:

<table>
<thead>
<tr>
<th>Leverage</th>
<th>Trigger value (x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L2)</td>
<td>$x = -25,00%$</td>
</tr>
<tr>
<td>(L3)</td>
<td>$x = -16,66%$</td>
</tr>
<tr>
<td>(L4)</td>
<td>$x = -12,50%$</td>
</tr>
<tr>
<td>(L5)</td>
<td>$x = -10,00%$</td>
</tr>
<tr>
<td>(L6)</td>
<td>$x = -10,00%$</td>
</tr>
<tr>
<td>(L7)</td>
<td>$x = -10,00%$</td>
</tr>
<tr>
<td>(L8)</td>
<td>$x = -10,00%$</td>
</tr>
<tr>
<td>(S1)</td>
<td>$x = 50,00%$</td>
</tr>
<tr>
<td>(S2)</td>
<td>$x = 25,00%$</td>
</tr>
<tr>
<td>(S3)</td>
<td>$x = 16,66%$</td>
</tr>
</tbody>
</table>
Over the course of the 10 minute period in which the average is determined, the index is not disseminated. The index dissemination ends 5 minutes after the trigger event and is resumed with an index level equal to the determined average 15 minutes after the trigger event.

Should the intraday rebalancing be triggered less than 15 minutes prior to the end of the index calculation day, the regular overnight rebalancing is carried out.

If the strategy index reaches a value of 0 or below over the course of the 15, the index is set to a value of 0 and its calculation / dissemination is discontinued.

Monthly Leveraged Indices: If the reference index (closing value) rises or falls by more than 40% in the course of the month, the monthly leveraged and short indices will be subject to an extraordinary adjustment. The leverage factor will be adjusted based on the closing value of the reference index. Herewith the risk of a potential total loss is minimized. The monthly leveraged and short indices have a floor value of zero.

3.3.4 Reverse Split

If the closing value of a daily leverage or short index drops below 100 index points, a reverse split is carried out. The leverage index is multiplied with a factor of 1000 whereas the Short index is multiplied with a factor of 1000.

The reverse split is carried out based on the index close ten trading days after the index initially dropped below a closing value of 100 points, notwithstanding whether the index rises above a level of 100 points in the meantime.

For optimal leverage indices as well as for monthly adjusted leverage and short indices, no reverse split is carried out.

3.3.5 Leverage Effect

The leverage effect causes an over proportional change of capital, employed during positive and negative market movements. This effect can be achieved by raising additional capital and reinvesting into the reference index and by investing capital from purchases and additional interests respectively. Therewith, investors can make use of this opportunity to employ a profitable investment strategy with low initial capital in order to multiply the chances of profit considerably. On the other hand this leverage effect inherits the risk of an over proportional capital loss (“downside risk”).

3.3.6 Computational Accuracy

Leveraged and short Indices are published rounded to two decimal places.
All adjustment factors of the reference index are described in the "Guide to the DAX Equity Indices".

3.4 DAXplus Minimum Variance and Maximum Sharpe Ratio Germany

3.4.1 Weight Calculation

The weight calculation of DAXplus® Minimum Variance Germany and DAXplus® Maximum Sharpe Ratio Germany takes place in three steps.

Step 1)

The daily returns over the last twelve months are calculated as follows for each constituent:

\[
\lambda_{ik} = \ln\left(\frac{Share_{ik}}{Share_{ik-1}}\right)
\]

whereby:

- \(\lambda_{ik} \) = daily return of share \(i = 1, \ldots, 30 \) at the time \(k = 1, \ldots, HT \)
- \(Share_{ik} \) = closing price of share \(i = 1, \ldots, 30 \) at the time \(k = 2, \ldots, HT \)
- \(k \) = trading day index
- \(HT \) = number of trading days over the last twelve months

Step 2)

Based on the returns, calculated in step 1 for all DAX constituents, the variances and the covariances are calculated as follows:

\[
\sigma_i = \sqrt{HT \cdot \frac{1}{HT-1} \sum_{k=1}^{HT} (\lambda_{ik} - \bar{\lambda}_i)^2}
\]

where:

- \(\sigma_i \) = standard deviation of share \(i = 1, \ldots, 30 \)
- \(\bar{\lambda}_i \) = average yield of share \(i = 1, \ldots, 30 \)

\[
Cov_{ij} = HT \cdot \frac{1}{HT-1} \sum_{k=1}^{HT} (\lambda_{ik} - \bar{\lambda}_i)(\lambda_{jk} - \bar{\lambda}_j)
\]

whereby:
Cov_{i,j} = \text{covariance}^6 \text{ of share } i=1, \ldots, 30 \text{ to share } j=1, \ldots, 30

Step 3)

Based on the variances and covariances calculated in step 2, the optimized portfolio weights can be calculated. For DAXplus Minimum Variance Germany the function to be optimized looks as follows:

\[\sigma^2_{\text{Portfolio}} = \sum_{i=1}^{30} \sum_{j=1}^{30} x_i \cdot x_j \cdot \text{Cov}_{i,j} = \sum_{i=1}^{30} x_i \cdot x_i \cdot \sigma_i \cdot \sigma_j \cdot \rho_{i,j} \]

\[x_i = \text{weight of share } i=1, \ldots, 30 \text{ in DAX portfolio} \]

\[\rho_{i,j} = \frac{\text{Cov}_{i,j}}{\sigma_i \cdot \sigma_j} \]

\[\sigma^2_{\text{Portfolio}} = \text{variance of DAX portfolio} \]

The correlation coefficient describes the reaction of a share to the price change of another share in the same portfolio and can be calculated as follows:

\[\rho_{i,j} = \frac{\text{Cov}_{i,j}}{\sigma_i \cdot \sigma_j} \]

For DAXplus Maximum Sharpe Ratio Germany the function to be optimized applies as follows:

\[\text{Sr}_p = \frac{r_p - r_f}{\sigma_{\text{Portfolio}}} \]

The Sharpe ratio reflects the difference between return of the portfolio and the risk-free return in relation to the portfolios standard deviation.

\[r_p = \pi_1 \cdot x_1 + \ldots + \pi_n \cdot x_n \]

\[\pi_i = \ln \left(\frac{\text{Share}_{\text{Endoftheye}}}{\text{Share}_{\text{Beginningoftheye} - 1}} \right) \]

\[\pi_i = \text{annual return of constituent } i=1, \ldots, 30 \]

\[r_f = \text{designated return for the entire portfolio} \]

\[\sigma_{\text{Portfolio}} = \sqrt{\sigma^2_{\text{Portfolio}}} \]

\[^6\text{ In case } i=j \text{ the covariance is the same as the variance of share } i.\]
\[\sigma_{\text{Portfolio}} = \text{standard deviation of the entire portfolio} \]

\[r_f = \text{risk-free return on capital market} \]

Following the optimization models with objective function and constraints:

A) DAXplus Minimum Variance Germany:

\[
\min \sigma^2_{\text{Portfolio}} = \sum_{i=1}^{30} \sum_{j=1}^{30} x_i \cdot x_j \cdot \sigma_i \cdot \sigma_j \cdot \rho_{ij}
\]

B) DAXplus Maximum Sharpe Ratio Germany:

\[
\max s_{r_p} = \frac{r_p - r_f}{\sigma_{\text{Portfolio}}}
\]

The objective functions are optimized subject to the following constraints:

Constraint 1: \(\sum_{i=1}^{30} x_i = 1 \)

The first constraint indicates that the sum of the weights in the portfolio must be equal to 100 percent. For some constituents, the optimization can result in weight of 0.00 percent. These constituents won’t be considered in the index.

Constraint 2: \(x_i \geq 0 \) for \((i=1, \ldots, 30)\)

The second constraint completes the mathematical model taking into account the non-negativity of the weight as well as exclusion of short sales.

Constraint 3: \(x_i \leq 0.1 \) for \((i=1, \ldots, 30)\)

The third constraint makes sure that the weight of each constituent is restricted to 10 percent.

In case of negative value for the objective function of DAXplus Maximum Sharpe Ratio Germany, the constituents from the last index composition are considered and weighted equally.

3.4.2 Weighting Factors Calculation

The weighting factors \(q_{iT}\) are derived using the weights which were determined in chapter 3.4.1. For each constituent the weight \(x_i\) is multiplied by the scale factor 1 bn. and divided by the current price \(p_{i,t}\). Reference date for the calculation is the last trading day of the month preceding the chaining month. The calculation of the weighting factors \((q_{iT})\) will be carried out using the closing prices of this...
date. The determined weighting factors become effective for the index calculation on the next chaining Friday.

\[q_{iT} = \frac{x_i}{p_{it}} \cdot 1 \text{ bn.} \]

The scale factor 1 bn. is defined as the sum of the product of the prices \(p_{it} \) and weighting factors \(q_{iT} \).

The weighting factors are kept constant for the following three months after the chaining procedure.

3.4.3 Index Formula

The weighting factors \(q_{iT} \) are kept constant between two chaining dates and DAXplus® Minimum Variance Germany and DAXplus® Maximum Sharpe Ratio Germany are calculated as follows:

\[
\text{Index}_i = K_T \cdot \frac{\sum_{i=1}^{n} p_{it} \cdot q_{iT} \cdot c_{it}}{\sum_{i=1}^{n} p_{i0} \cdot q_{i0}} \cdot \text{Base}
\]

whereby:

- \(c_{it} \) = Adjustment factor of company i at time t
- \(n \) = Number of shares in the index
- \(p_{i0} \) = Closing price of share of company i on the trading day before the first inclusion in the index
- \(p_{it} \) = Price of share of company i at time t
- \(q_{i0} \) = weighting factor of company i on the trading day before the first inclusion in the index
- \(q_{iT} \) = weighting factor of company i at time T
- \(t \) = calculation time of the index
- \(K_T \) = Index-specific chaining factor valid as of chaining date T
- \(T \) = Date of the last chaining

The formula set out below is equivalent in analytic terms, but designed to achieve relative weightings:
Index calculation can be reproduced in simplified terms by using the expression F_i:

- Multiply the current price by the respective F_i weighting factor;
- take the sum of these products; and
- divide this by the base value (A) which remains constant until a modification in the index composition occurs.

The F_i factors provide information on the number of shares required from each company to track the underlying index portfolio.

3.4.4 Computational Accuracy

DAXplus® Minimum Variance Germany and DAXplus® Maximum Sharpe Ratio Germany are published rounded to two decimal places.

All factors which are required for the calculation are rounded to two decimal places as well.

All DAX® adjustment factors are described in the “Guide to the DAX Equity Indices”.

\[
\text{Index}_i = \frac{\sum_{i=1}^{n} p_{it} \cdot (K_T \cdot \frac{q_{it}}{\sum_{i=1}^{n} q_{io}} \cdot 100 \cdot c_{it})}{\sum_{i=1}^{n} p_{io} \cdot \frac{q_{io}}{\sum_{i=1}^{n} q_{io}} \cdot 100} \cdot \text{Base} = \frac{\sum_{i=1}^{n} p_{it} \cdot F_i}{A} \cdot \text{Base}
\]

whereby:

\[
A = \frac{\sum_{i=1}^{n} p_{io} \cdot q_{io} \cdot 100}{\sum_{i=1}^{n} q_{io}}
\]

and:

\[
F_i = K_T \cdot \frac{q_{it}}{\sum_{i=1}^{n} q_{io}} \cdot 100 \cdot c_{it}
\]
3.4.5 Chaining
The chaining7 procedure for DAXplus® Minimum Variance Germany and DAXplus® Maximum Sharpe Ratio Germany takes place as described in chapters 3.1.5, 3.1.6 and 3.1.7 with the special focus on actualization of the weights x_i and weighting factors q_{iT} as defined in chapter 3.4.1 in step 3 and in chapter 3.4.2.

3.5 DAXplus Maximum Dividend

3.5.1 Index formula

$$\text{Index}_i = K_T \cdot \frac{\sum_{i=1}^{n} p_{iT} \cdot q_{iT} \cdot c_{iT}}{\sum_{i=1}^{n} p_{iT} \cdot q_{iT}} \cdot \text{Basis}$$

- c_{iT} = Adjustment factor of company i at time t
- n = Number of shares in the index
- p_{iT} = Price of share of company i at time t
- p_{iT} = Closing price of share of company i at time t
- q_{iT} = Weighting factor of company i at time T
- t = Calculation time of the index
- K_T = Index specific chaining factor valid as of chaining date T
- T = Date of the last chaining

3.5.2 Determination of weighting factors
The weighting factors are derived from the expected dividend yields by dividing the dividend yield DY_i by the current price p_i and multiplying by the normalization factor of 1 billion. The expected dividend yield is calculated on the basis of announced or expected dividends and the closing price at the time of the ranking.

$$DY_i = \frac{\sum d_{i,t}}{p_i}$$

whereby:

- $d_{i,t}$ = Announced or expected dividend payout for share i at time t

7 The free-float factors f_{it} are set to 1.
$p_i = \text{closing price of share } i \text{ on the last trading day in April and October}$

$t = \text{time within the upcoming six-month index calculation period}$

The index weights and weighting factors are calculated as follows:

$$w_i = \frac{DY_i}{\sum DY_i}$$

$$q_{i,T} = \frac{w_i}{p_{i,T}} \cdot 1 \text{ bn}$$

whereby:

$w_i = \text{weight of share } i$

$DY_i = \text{expected dividend yield of share } i$

$p_{i,T} = \text{closing price of share } i \text{ at time of the rebalancing}$

The weighting factors $q_{i,T}$ from each chaining remain stable for six month.

3.6 DAXplus Risk Trigger Germany

3.6.1 Index formula

$$RTI_t = RTI_{t-1} \cdot \frac{\text{Index}_t}{\text{Index}_{t-1}}$$

whereby:

$t = \text{calculation time of the index}$

$\text{Index}_t = \text{DAX / eb.rexx Money Market, depending on the currently selected asset class}$

3.6.2 Calculation Accuracy

DAXplus® Risk Trigger Germany is published rounded to two decimal places.

All adjustment factors are described in the “Guide to the DAX Equity Indices”.

3.7 Dividend Points Indices

3.7.1 Index formula

DAX® Dividend Points and DivDAX® Dividend Points are calculated as follows:

$$DVP_t = DVP_{t-1} + DP_t,$$

with DP_t reflecting the dividend points of the underlying index portfolio.
The dividend points of the index portfolio are derived as follows:

$$DP_t = K_T \cdot \frac{\sum_{i=1}^{n} d_{it} \cdot q_{i0} \cdot ff_{it} \cdot c_{it}}{\sum_{i=1}^{n} p_{i0} \cdot q_{i0}} \cdot \text{Basis}$$

$d_{it} = \text{Distribution of share class } i \text{ on ex-date } t$

The index is calculated based on distribution data determined in accordance with the DAX Equity Indices.

The remaining parameters are identical to those used in the calculation of the underlying price index (cf. Guide to the DAX Equity Indices).

After the regular index chaining in December the Dividend Points index is reset to zero.

3.7.2 Calculation Accuracy

DAX® Dividends Points and DivDAX® Dividend Points are published rounded to two decimal places.

All adjustment factors are described in the “Guide to the DAX Equity Indices”.

3.8 DAXplus Family-Index

3.8.1 Index Formula

The indices are based on the index formula of Laspeyres und are calculated as follows:

$$\text{Index}_i = K_T \cdot \frac{\sum_{i=1}^{n} p_{it} \cdot ff_{iT} \cdot q_{iT} \cdot c_{it}}{\sum_{i=1}^{n} p_{i0} \cdot q_{i0}} \cdot \text{Base}$$

whereby:

$c_{it} = \text{Adjustment factor of share } i \text{ at time } t$

$ff_{it} = \text{Free float factor of share } i \text{ at time } T$

$n = \text{Number of shares in the index}$

$p_{i0} = \text{Closing price of share } i \text{ on the trading day before the first inclusion in the index}$

$p_{it} = \text{Price of share } i \text{ at time } t$

$q_{i0} = \text{Number of shares of company } i \text{ on the trading day before the first inclusion in the index}$

$q_{iT} = \text{Number of shares of company } i \text{ at time } T$
t = calculation time of the index

K_T = Index specific chaining factor valid as of chaining date T

T = Date of the last chaining

3.8.2 Calculation Accuracy

The DAXplus® Family index will be published rounded at two decimal places.

All adjustment factors refer to the “Guide to the DAX Equity Indices”.

3.9 DAX Risk Control Indices

3.9.1 Index Formula

\[\text{Index}_{TR_t} = \text{Index}_{TR_{t-1}} \times \left[1 + w_{t-1} \times \left(\frac{DAX_{t}}{DAX_{t-1}} - 1 \right) + (1 - w_{t-1}) \times \left(\frac{EONIA_{t}}{360} \right) \right] \]

\[\text{Index}_{ER_t} = \text{Index}_{ER_{t-1}} \times \left(1 - EONIA_{t} \times \frac{\text{Diff}(t-1,t)}{360} \right) \times \left[1 + w_{t-1} \times \left(\frac{DAX_{t}}{DAX_{t-1}} - 1 \right) + (1 - w_{t-1}) \times \left(\frac{EONIA_{t}}{360} \right) \right] \]

where

\(\text{Index}_{ER_t} \) = Excess Return Index Level on Index Level Determination Date \(t \)

\(\text{Index}_{ER_{t-1}} \) = Excess Return on Index Level Determination Date \(t - 1 \)

\(\text{Index}_{TR_t} \) = Total Return on Index Level Determination Date \(t \)

\(\text{Index}_{TR_{t-1}} \) = Total Return on Index Level Determination Date \(t - 1 \)

\(w_{t-1} \) = Equity Weight on Index Level Determination Date \(t - 1 \)

\(DAX_{t} \) = Level of the DAX (TR) Index on Index Level Determination Date \(t \)

\(DAX_{t-1} \) = Level of the DAX (TR) on Index Level Determination Date \(t - 1 \)

\(EONIA \) = The EONIA\(^8\) rate on the Index Level Determination Date \(t \)

\(\text{Diff}(t-1,t) \) = Difference between \(t - 1 \) and \(t \) measured in calendar days

3.9.2 Determination of the Target Weight (Tgtw)

On any Index Level Determination Date \(t \), the Target Weight shall be determined as follows:

\(^8\) The index will be calculated using EONIA that is published on day \(t - 1 \) in respect of day \(t - 2 \).
$T_{tgtw_i} = \frac{TgtVol}{\text{Max RealizedVol}_{i,20,60}}$

where:

$TgtVol$ 5% (10%, 15%, 20%)

$\text{Max RealizedVol}_{20,60}$ is the maximum of the realized volatilities measured over 20 days and 60 days

$\text{RealizedVol}_{t,s} = \sqrt{\frac{252}{n} \sum_s \left[\log\left(\frac{\text{DAX}_t}{\text{DAX}_{s-1}} \right) \right]^2}$

where:

$\begin{align*}
\text{n} & \quad 19 \, (59) \\
\text{s} & \quad \text{ranging from } t-18 \text{ to } t \, (t-58 \text{ to } t)
\end{align*}$

3.9.3 Determination of the Equity Weight and Index Rebalancing Days

The Equity Weight on the Index Start Date shall be equal to the Target Weight at the Index Start Date,

$w_0 = \text{Min}(\text{Cap}, Tgtw_0)$

On any Index Level Determination Date t subsequent to the Index Start Date, the Equity Weight shall be determined as follows:

(i) If $\abs{1 - \frac{w_{t-1}}{Tgtw_{t-1}}} > \text{Toleranz}$

then the Index Level Determination Date t will be an Index Rebalancing Day and

$w_t = \text{Min}(\text{Cap}, Tgtw_{t-1})$

(ii) Otherwise, Index Level Determination Date t will not be an Index Rebalancing Day and

$w_t = w_{t-1}$

where:

Tolerance 5%

$w_{t/t-1}$ Equity Weight on Index Level Determination Date $t / t - 1$

$Tgtw_{t-1}$ Target Weight on Index Level Determination Date $t-1$

Cap 150%
3.10 Currency-Hedged Indices

The following definitions will be used throughout the chapter:

- \(H_{IDX_t} \) = hedged index for day \(t \)
- \(UH_{IDX_t} \) = unhedged reference index (in hedged currency) for day \(t \)
- \(t=0 \) = last calculation day of preceding month (reset date)
- \(t \) = day of index calculation / number of calendar days since \(t=0 \)
- \(T \) = number of calendar days in current month
- \(AF_t \) = notional adjustment factor for day \(t \)
- \(HR_{c,t} \) = hedge ratio of currency \(c \) for day \(t \)
- \(FX_{c,t} \) = Spot currency rate for day \(t \)
- \(FF_{c,t} \) = 1-month forward currency rate for day \(t \)
- \(IFF_{c,t} \) = interpolated forward currency rate for day \(t \)
- \(R_t \) = return from hedging for day \(t \)

All currency rates are expressed as units of foreign currency \(c \) per one unit of domestic (hedged) currency.

The adjustment factor \(AF_t \) reflects the changes in the notional value to be hedged between \(t=0 \) and \(t \):

\[
AF_t = \frac{UH_{IDX_t}}{UH_{IDX_0}}
\]

The hedge ratio \(HR_{c,t} \) can be varied to arrive at index portfolios that are over- or under-hedged to varying degrees. Furthermore it can be used to hedge multi-currency portfolios.

To fully hedge a multi-currency portfolio, the hedge ratio of each currency is calculated as the sum of weights of the securities quoted in that currency:

\[
HR_{c,t} = \sum_{i: ccy_i = c} w_{i,t}
\]

The interpolated forward currency rate \(IFF_{c,t} \) corrects the 1-month forward rate – traded with a fixed 1-month maturity – to reflect the progressively closer expiry \((t=T) \) of the hedge. In other words, the interpolated 1-month forward rate linearly converges to the spot rate as \(t=T \) approaches:

\[
IFF_{c,t} = FX_{c,t} + \left(1 - \frac{t}{T} \right) \cdot (FF_{c,t} - FX_{c,t})
\]

From the above definition, it follows that \(IFF_{c,0} = FF_{c,0} \) and \(IFF_{c,T} = FX_{c,T} \).

For each currency \(c \), the contribution of hedging to the index return is defined as the product of the relevant hedge ratio by the return on the forward currency trade.
For instance, an investor knows in t=0 that she will receive a payment of 1 unit of foreign currency in t=T. She could wait and convert it at the then prevailing spot rate FX_{c,T} and obtain 1/FX_{c,T} units of domestic currency. Alternatively, she could enter a forward trade in t=0 to sell the foreign currency in t=T at FF_{c,0}, thus obtaining 1/FF_{c,0} units of domestic currency.

The P&L from the forward trade, as compared to a spot conversion, is thus:

$$P&L_{c,[0,T]} = \frac{1}{FF_{c,0}} - \frac{1}{FX_{c,T}}.$$

By expressing the forward trade P&L as percentage of the payment value in domestic currency in t=0 and rearranging the terms, the returns on the forward trade can be expressed as:

$$\frac{FX_{c,0} \cdot FX_{c,T}}{FF_{c,0} \cdot FF_{c,T}}.$$

The expression for forward trade returns can then be generalized as:

$$R_t = \sum_{c=1}^{C} HR_{c,t-1} \left(\frac{FX_{c,0} \cdot FX_{c,T}}{IFF_{c,t-1} \cdot IFF_{c,t}} \right)$$

3.10.1 Daily Hedged Indices

With daily hedged indices, the hedging trade is entered at the end of each calendar month. From that day onwards, the returns of the underlying, unhedged index are integrated by the returns from hedging. Moreover, the notional amount being hedged and the weight of the individual underlying currencies are adjusted on a daily basis.

At the cost of an increased trading activity, the daily hedging aims to timely and precisely offset the currency exposures of the index and is thus particularly suited to volatile markets.

The daily currency hedged indices are thus calculated as:

$$H_{IDX_t} = H_{IDX_0} \cdot \left(\frac{UH_{IDX_t}}{UH_{IDX_0}} + \sum_{d=1}^{C} AF_{d-1} \cdot R_d \right)$$

3.10.2 Monthly Hedged Indices

In the monthly hedged version, the forward hedge is set up once a month and remains unchanged until the next reset: the currency weights are fixed at each reset, as well as the notional hedge amount.

The monthly currency hedged indices are thus calculated as:

$$H_{IDX_t} = H_{IDX_0} \cdot \left(\frac{UH_{IDX_t}}{UH_{IDX_0}} + \sum_{c=1}^{C} HR_{c,0} \cdot \left(\frac{FX_{c,0} \cdot FX_{c,T}}{FF_{c,0} \cdot IFF_{c,T}} \right) \right)$$
The expression can be directly derived from the formula for daily currency hedged indices, by setting $AF_t = AF_0$ and $HR_{c,t} = HR_{c,0}$.

3.11 DAXplus 30 Decrement 40 index

3.11.1 Index Formula

$$IV_t = IV_{t-1} \cdot \frac{U_t}{U_{t-1}} \cdot D \cdot \frac{ACT(t-1,t)}{365}$$

whereby:

IV_t = index value on day t

$IV_0 = 708.68$ on 04 January 2005

U_t = index value of underlying DAX EUR (TR) index on day t

D = fixed index points decrement (40)

$ACT(t-1,t) =$ number of actual calendar days between $t-1$ and t

The calculation is based on the latest available index level.

3.12 idDAX 50 Equal Weight

3.12.1 Index Formula

The idDAX 50 Equal Weight Index uses the Laspeyres index formula and are calculated as follows:

$$Index_t = K_T \cdot \frac{\sum_{i=1}^{n} p_{it} \cdot q_{it} \cdot c_{it}}{\sum_{j=1}^{n} p_{i0} \cdot q_{i0}} \cdot Base$$

whereby:

$c_{it} =$ Adjustment factor of company i at time t

$n =$ Number of shares in the index

$p_{i0} =$ Closing price of share i on the trading day before the first inclusion in the index

$p_{it} =$ Price of share i at time t

$q_{i0} =$ Weighting factor of company i on the trading day before the first inclusion in the idDAX 50 Equal Weight Index

$q_{iT} =$ Weighting factor of company i at time T
t = calculation time of the index

K_T = Index-specific chaining factor valid as of chaining date T

T = Date of the last chaining

The calculation is based on the input data used for calculating the DAX index (cf. DAX Equity Indices).

3.13 idDAX 50 Equal Weight Decrement 4.00%

3.13.1 Index Formula

\[IV_t = IV_{t-1} \cdot \left(\frac{U_t}{U_{t-1}} - D \cdot \frac{ACT(t-1, t)}{365} \right) \]

whereby:

\(IV_t \) = index value on day t

\(IV_0 = 100 \) on 21 March 2005

\(U_t \) = index value of underlying idDAX 50 Equal Weight EUR (Net Total Return) index on day t

\(D = \) constant number of percentage subtracted (4%)

\(ACT_{(t-1, t)} = \) number of actual calendar days between t-1 and t

The calculation is based on the latest available index level.
3.14 idDAX Leveraged/Short NC Indices

3.14.1 Index Formula

Leveraged Indices are calculated as follows:

\[
\text{LevIDX}_t = \text{LevIDX}_T \times \left[1 + L \left(\frac{\text{IDX}_t - \text{DF}_t}{\text{IDX}_T} - 1 \right) - (L-1) \cdot \text{IR}_T + L \cdot \text{GF}_M \right] \frac{d}{360}
\]

Short Indices are calculated as follows:

\[
\text{ShortIDX}_t = \text{ShortIDX}_T \times \left[1 + L \left(\frac{\text{IDX}_t}{\text{IDX}_T} - 1 \right) + (1-L) \cdot \text{IR}_T + L \cdot (c_M + \text{GF}_M) \right] \frac{d}{360}
\]

Where:

\begin{align*}
L & \quad = \text{leverage factor} \\
\text{IDX} & \quad = \text{reference index (i.e. DAX Performance Index)} \\
\text{IR} & \quad = \text{interest rate:} \\
& \quad \quad \quad \quad \text{Daily Leverage Indices: EONIA}^9 + (\text{EURIBOR (12M)} - \text{1Y EONIA Swap Rate}) \\
& \quad \quad \quad \quad \text{Daily Short Indices: EONIA}^9 \\
c_M & \quad = \text{cost of borrowing (short indices only)} \\
\text{DF}_t & \quad = \text{dividend factor} \\
\text{GF}_M & \quad = \text{gap risk factor (based on VDAX-NEW)} \\
\text{t} & \quad = \text{time of calculation} \\
\text{T} & \quad = \text{time of last rebalancing (last trading day)} \\
d & \quad = \text{number of calendar days between t and T}
\end{align*}

The leverage term describes the effect of index movements on leveraged and short indices based on the underlying index. In the leverage term an adjustment for taxes paid on dividends is made. The “finance term” of the leveraged indices indicates the costs caused by raising capital and reinvesting into the reference index portfolio. The “interest term” of the short indices represents the additional interest generated by selling the reference index portfolio and the risk-free investment of the proceeds. Both “finance term” and “interest term” are adjusted for a market-driven parameter to reflect replication costs that become increasingly important in hedging transactions for highly leveraged indices.

The gap risk factor consists of a long-term component and a short-term component. To account for gap risk that cannot be captured by the long-term market-driven parameter, a short-term component is included to properly reflect the gap risk during highly volatile market regimes due to e.g.

\footnote{The index will be calculated using EONIA that is published on day T in respect of day T-1.}
unpredictability, potential lack of liquidity in short-term vanilla options and/or maturity-mismatch to the VDAX-NEW (DE000A0DMX99).

Euro Overnight Index Average (EONIA) is calculated as the European short-term rate (€STR) + 8.5 bps. From 1 January 1999 until 30 September 2019 it was the effective reference rate computed daily as a weighted average of all overnight unsecured lending transactions undertaken in the interbank market by European Central Bank since 1 January 1999. Before that, the daily interest provided by Deutsche Bundesbank has been used for calculation.

The Euro Interbank Offered Rate (EURIBOR) is a daily reference rate based on the averaged interest rates at which banks offer to lend unsecured funds to other banks in the euro wholesale money market (or interbank market).

The liquidity Spread (EURIBOR (12M) – 1Y EONIA Swap Rate) is updated on a monthly basis. It is determined using the average over the liquidity spreads of five trading days ranging from 5th last to the last calculation day prior to each monthly rebalancing date (3rd Friday). To calculate the liquidity spread, the closing values of the 1Y EONIA (swap rates) are taken.

Similar to the liquidity spread, the gap risk factor (GFM) is updated on a monthly basis. It consists of a long-term and a short-term market-driven component. The long-term component is based on an average of VDAX-NEW close prices calculated from the last 120 trading days. The short-term component is obtained by averaging the VDAX-NEW index close prices calculated from the last 20 trading days. The average is always calculated to the last trading day prior to each monthly rebalancing (3rd Friday). The risk premium will be added if the monthly averaged (20d) VDAX-NEW Index value exceeds a level of 27, to represent a riskier market regime (27 is approximately the 75-percentile of VDAX-NEW close values). Depending on the lever of the index, the VDAX-NEW is multiplied by a factor reflecting the elevated hedging needs.

The dividend factor is calculated as described below (rounded to six digits). The adjustment factors correct the amount of all payouts from the portfolio that underlie taxation from the investor perspective (i.e. dividends and bonus payments). The need for this factor is given since the correct free float amount of shares has to be used to calculated the tax loss, that is, before the reinvestment of the dividend is reflected in the ci factor. Due to the underlying index (DAX) being a Total Return index, the adjustment for the reinvestment of the dividend has to be performed:

\[
DF_t = K_T \cdot KAF_t \cdot \frac{\sum_{i=1}^{n_i} (d_{k_i} - n_{d_i})q_{k_i}E_{T_i}c_{AF_i}}{\sum_{i=1}^{n_i} P_{r}q_{t}B_{i}} . \text{ Basis}
\]

The adjustment factor cAF represents the inverse of the correction factor adjustment due to dividend payments in the DAX Performance Index. The adjustment factor corrects the amount of all payouts from the portfolio that underlie taxation from the investor perspective (i.e. dividends and bonus payments). If any corporate action occurs on the same date a dividend is paid, the order of corporate actions is followed as defined by the company and the ci factor is adjusted in this order.
The need for this factor is given since the correct free float amount of shares has to be used to calculated the tax loss, that is, before the reinvestment of the dividend is reflected in the ci factor from the Total Return Index (reinvestment of 100% of dividend).

If any corporate action occurs on the same date a dividend is paid, the order of corporate actions is followed as defined by the company and the ci factor is adjusted in this order. The ci adjustment factor (cAF\textsubscript{it}) is calculated as:

\[cAF_{it} = \frac{1}{c_{it^*}}, \text{ and } nd_{it} = d_{it} \cdot (1 - \tau) \]

In case a company declares a cash payment so that the cumulated payout between two chaining dates is higher than 10% of the market capitalisation, chapter 8.1.3. of the DAX Equity Indices applies.

The K\textsubscript{T} factor has to be adjusted accordingly if such an event occurs, K\textsubscript{T} adjustment factor (KAF\textsubscript{T}) is calculated as:

\[
K_{AF_T} = \begin{cases}
1, & \text{on any day } t \text{ when no 10% payout rule exercised} \\
\frac{K_T}{K_T^*}, & \text{on any day } t \text{ when the 10% payout rule is exercised}
\end{cases}
\]

For this purpose, an interim chaining factor K\textsubscript{T*} has to be calculated, that will contain all corporate actions except the adjustment of the cash payment triggering the payout rule.

\[
K_{T^*} = \frac{\text{Index}_{t}}{\text{Interimvalue}_{t^*}}, \text{ with } \text{Interimvalue}_{t^*} = \frac{\sum_{t=0}^{n} p_{i(t)}^* \cdot q_{i(t)}^* \cdot c_{it^*}}{\sum_{t=0}^{n} p_{i(t)}^* \cdot q_{i(t)}^*}
\]

All standard parameters used in the calculation of the underlying index can be found in the DAX Equity Indices.

\[\tau = \text{Witholding tax factor as per country at time } t \text{ (link) } \]
\[d_{it} = \text{Gross dividend of share class } i \text{ on ex-date } t \]
\[nd_{it} = \text{Net dividend of share class } i \text{ on ex-date } t \]
\[cAF_{it} = \text{ci Adjustment factor for dividend payment of share class } i \text{ on ex-date } t \]
\[c_{it^*} = \text{cit^* latest correction factor immediately prior to ci adjustment due to cash payment (including potential other corporate actions) } \]
\[K_{AF_T} = \text{K_T Adjustment factor for portfolio reinvestment in case dividend or bonus payment > 10% } \]
\[K_{T^*} = \text{Reflects any adjustment to the portfolio applicable on day } t \text{, but excluding the Kt adjustment due to the 10% payout rule } \]
\[K_T = \text{K_T factor used in underlying index on day } t \text{ (including all adjustments) } \]

The remaining parameters are identical to those used in the calculation of the underlying index (DAX Performance Index, DE0008469008).

The gap risk factor is calculated as described below:
\[GF_M = VDAXMult \cdot VDAX-\text{NEW}_{6M,\text{avg}} + \max\{0; VDAXMult \cdot (VDAX-\text{NEW}_{1M,\text{avg}} - 27)\} \]

\[= VDAXMult \cdot (VDAX-\text{NEW}_{6M,\text{avg}} + \max\{0; VDAX-\text{NEW}_{1M,\text{avg}} - 27\}) \]

Where:

VDAXMult|\|L|\|=2,3,4,5,6 = 0.0002

VDAXMult|\|L|\|=7,8,10 = 0.0003

VDAXMult|\|L|\|=12,14,15 = 0.0004

Section 3.14.4 gives an overview of the sensitivity of the gap risk factor depending on the respective level of VDAX-NEW.

The cost of borrowing will be updated on a monthly basis as described below:

\[C_M = \sum w_{i,M} \cdot c_{i,M} \]

Where:

\(c_{i,M} \) = Cost of borrowing the share \(i \) at time \(M \)

The data is provided by Data Explorers, the aggregator of stock lending information.

3.14.2 Adjustments due to extreme market movements

The intraday rebalancing is based on the minimum/maximum overall index values that occur in a time window of 10 minutes \([\theta, \theta^*]\). The time window to calculate the minimum/maximum starts immediately after the trigger event occurs \([\theta]\). The intraday rebalancing is triggered when the underlying index changes more than \(x\%\) (leverage indices) or appreciates by more than \(x\%\) (short indices) compared to its previous day’s close.

The respective trigger values (x) are given in the following table:

<table>
<thead>
<tr>
<th>Leverage (L)</th>
<th>Trigger Value x</th>
<th>Leverage (L)</th>
<th>Trigger Value x</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-45%</td>
<td>-2</td>
<td>45%</td>
</tr>
<tr>
<td>3</td>
<td>-28%</td>
<td>-3</td>
<td>28%</td>
</tr>
<tr>
<td>4</td>
<td>-21%</td>
<td>-4</td>
<td>21%</td>
</tr>
<tr>
<td>5</td>
<td>-17%</td>
<td>-5</td>
<td>17%</td>
</tr>
<tr>
<td>6</td>
<td>-14%</td>
<td>-6</td>
<td>14%</td>
</tr>
</tbody>
</table>
The rebalancing is based on the minimum/maximum overall index values that occur in a time window of 10 minutes. Within the intraday rebalancing process, the base value when the minimum or maximum occurs in time t^* is calculated as:

If $L > 0$: $\text{IDX}_{t^*} = \min_{[0,t^*]} \text{IDX}_t$

If $L < 0$: $\text{IDX}_{t^*} = \max_{[0,t^*]} \text{IDX}_t$

The rebalancing will be carried out by simulating a new day:

$d := 0$

On that day after the intraday rebalancing in time t the indices are calculated as:

$\text{LevIDX}_{t} = \text{LevIDX}_{t^*} \cdot \left[1 + L \cdot \left(\frac{\text{IDX}_t}{\text{IDX}_{t^*}} - 1 \right) \right]$

$\text{ShortIDX}_{t} = \text{ShortIDX}_{t^*} \cdot \left[1 + L \cdot \left(\frac{\text{IDX}_t}{\text{IDX}_{t^*}} - 1 \right) \right]$

With:

$\text{LevIDX}_{t^*} = \text{LevIDX}_T \cdot \left[1 + L \cdot \left(\frac{\text{IDX}_T}{\text{IDX}_{t^*}} - 1 \right) \right]$

$\text{ShortIDX}_{t^*} = \text{ShortIDX}_T \cdot \left[1 + L \cdot \left(\frac{\text{IDX}_T}{\text{IDX}_{t^*}} - 1 \right) \right]$

Over the course of the 10 minute period in which the minimum/maximum is determined, the index is not disseminated. The index dissemination ends immediately after the trigger event and is resumed with an index level equal to the determined minimum/maximum 10 minutes after the trigger event.

In case the intraday rebalancing is triggered after 17:30 CET the intraday rebalancing will not be carried out. Any index value that triggers the intraday rebalancing before and equal to 17:30 will lead to the intraday rebalancing described above. Accordingly, the 10 minutes' window can extend into the time period after continuous trading on XETRA (until 17:30). The regular overnight rebalancing is

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>-12%</td>
<td>-7</td>
<td>12%</td>
</tr>
<tr>
<td>8</td>
<td>-10%</td>
<td>-8</td>
<td>10%</td>
</tr>
<tr>
<td>10</td>
<td>-8%</td>
<td>-10</td>
<td>8%</td>
</tr>
<tr>
<td>12</td>
<td>-7%</td>
<td>-12</td>
<td>7%</td>
</tr>
<tr>
<td>14</td>
<td>-6%</td>
<td>-14</td>
<td>6%</td>
</tr>
<tr>
<td>15</td>
<td>-6%</td>
<td>-15</td>
<td>6%</td>
</tr>
</tbody>
</table>
always carried out, given that the leveraged / short index is not suspended. The close value of the leveraged/ short indices is based on the close price of the underlying.

If the leverage/short indices reach a value of 0 or below, the index is set to a value of 0 and its calculation / dissemination is discontinued.

3.14.3 Reverse Split

If the closing value of a daily leverage or short index drops below 10 index points, a reverse split is carried out. The idDAX Leveraged/Short NC indices are multiplied with a factor of 100.

The reverse split is carried out based on the index close ten trading days after the index initially dropped below a closing value of 10 points, notwithstanding whether the index rises above a level of 10 points in the meantime.

3.14.4 Sensitivity table for gap risk factor (GFM in bps):

| VDAX − NEW₆M.avg | VDAX − NEW₁₅M.avg | GF₉M: |L| = 2, 3, 4, 5, 6 | GF₉M: |L| = 7, 8, 10 | GF₉M: |L| = 12, 14, 15 |
|------------------|------------------|-------|-----------------|-----------------|-----------------|-----------------|
| 5 | 10 | 10 | 15 | 20 | 20 |
| 10 | 15 | 20 | 30 | 40 | 40 |
| 15 | 20 | 30 | 45 | 60 | 60 |
| 20 | 25 | 40 | 60 | 80 | 80 |
| 25 | 30 | 56 | 84 | 112 | 112 |
| 30 | 35 | 76 | 114 | 152 | 152 |
| 35 | 40 | 96 | 144 | 192 | 192 |
| 40 | 45 | 116 | 174 | 232 | 232 |

3.14.5 List of Indices

Leveraged Indices:

<table>
<thead>
<tr>
<th>Index Name</th>
<th>ISIN</th>
<th>Leverage factor L</th>
</tr>
</thead>
<tbody>
<tr>
<td>idDAX 2x Leveraged NC Index</td>
<td>DE000A2GTBT9</td>
<td>2</td>
</tr>
<tr>
<td>idDAX 3x Leveraged NC Index</td>
<td>DE000A2GTBU7</td>
<td>3</td>
</tr>
<tr>
<td>idDAX 4x Leveraged NC Index</td>
<td>DE000A2GTBV5</td>
<td>4</td>
</tr>
<tr>
<td>idDAX 5x Leveraged NC Index</td>
<td>DE000A2GTBW3</td>
<td>5</td>
</tr>
<tr>
<td>idDAX 6x Leveraged NC Index</td>
<td>DE000A2GTBX1</td>
<td>6</td>
</tr>
</tbody>
</table>
3.15 DAX Equal Weight Index

3.15.1 Index Formula

The DAX® Equal Weight Index is calculated as follows:

\[
\text{Index}_i = K_T \cdot \frac{\sum_{i=1}^{n} p_{it} \cdot q_{it} \cdot c_{it}}{\sum_{i=1}^{n} p_{i0} \cdot q_{i0}} \cdot \text{Base}
\]

whereby:

- \(c_{it} \) = Adjustment factor of company \(i \) at time \(t \)
- \(n \) = Number of shares in the index

<table>
<thead>
<tr>
<th>Index Name</th>
<th>ISIN</th>
<th>Leverage factor L</th>
</tr>
</thead>
<tbody>
<tr>
<td>idDAX 7x Leveraged NC Index</td>
<td>DE000A2GTBY9</td>
<td>7</td>
</tr>
<tr>
<td>idDAX 8x Leveraged NC Index</td>
<td>DE000A2GTBZ6</td>
<td>8</td>
</tr>
<tr>
<td>idDAX 10x Leveraged NC Index</td>
<td>DE000A2GTB02</td>
<td>10</td>
</tr>
</tbody>
</table>

Short Indices:

<table>
<thead>
<tr>
<th>Index Name</th>
<th>ISIN</th>
<th>Leverage factor L</th>
</tr>
</thead>
<tbody>
<tr>
<td>idDAX 2x Short NC Index</td>
<td>DE000A2GTBT9</td>
<td>-2</td>
</tr>
<tr>
<td>idDAX 3x Short NC Index</td>
<td>DE000A2GTBU7</td>
<td>-3</td>
</tr>
<tr>
<td>idDAX 4x Short NC Index</td>
<td>DE000A2GTBV5</td>
<td>-4</td>
</tr>
<tr>
<td>idDAX 5x Short NC Index</td>
<td>DE000A2GTBW3</td>
<td>-5</td>
</tr>
<tr>
<td>idDAX 6x Short NC Index</td>
<td>DE000A2GTBX1</td>
<td>-6</td>
</tr>
<tr>
<td>idDAX 7x Short NC Index</td>
<td>DE000A2GTBY9</td>
<td>-7</td>
</tr>
<tr>
<td>idDAX 8x Short NC Index</td>
<td>DE000A2GTBZ6</td>
<td>-8</td>
</tr>
<tr>
<td>idDAX 10x Short NC Index</td>
<td>DE000A2GTB02</td>
<td>-10</td>
</tr>
<tr>
<td>idDAX 12x Short NC Index</td>
<td>DE000A2GTB10</td>
<td>-12</td>
</tr>
<tr>
<td>idDAX 14x Short NC Index</td>
<td>DE000A2GTB28</td>
<td>-14</td>
</tr>
<tr>
<td>idDAX 15x Short NC Index</td>
<td>DE000A2GTB36</td>
<td>-15</td>
</tr>
</tbody>
</table>
3.15.2 Determination of weighting factors

For chaining the weighting factor $q_{i,T+1}$ of every company will be adjusted in order to ensure that every company has the same weighting in the index.

The following applies accordingly:

$$q_{i,t+1} = \frac{1}{p_n \cdot n} \cdot c$$

whereby:

\begin{align*}
 t &= \text{Time of last trading on the day of scheduled or unscheduled chaining} \\
 n &= \text{Number of shares in index} \\
 p_n &= \text{Price of company i at time } t \\
 q_{i,t+1} &= \text{Weighting factor of company i at time } t+1 \\
 c &= \text{Scaling factor } (1000000 \cdot \sum_{i=1}^{n} p_n)
\end{align*}

Weighting factors are rounded to the nearest integer.

3.16 Discretion

Save for the cases expressly described in this Guide, the index methodology is entirely rule-based and automatic. Discretion only applies if expressly stated and must be exercised as provided for in this Guide.

3.16.1 Exercise of Discretion

Discretion may only be exercised with a view to resolve issues arising in maintaining the prevailing index methodology in response to unanticipated events, with an overarching aim to accurately and reliably measure the market or economic realities as defined in this Guide.

In accordance with BMR discretion shall be exercised in line with the following principles:

- The body or person(s) exercising discretion must not be affected by a conflict of interest;
The body or person(s) exercising discretion must have the requisite skills, knowledge and experience to exercise such discretion;

- All facts and circumstances relevant for the exercise of discretion must have been established and properly documented prior to the exercise of discretion;
- The exercise of discretion must comply with all applicable laws and regulations;
- The body or person(s) exercising discretion must act on the basis of the relevant facts and circumstances only, must give proper weight to the various considerations and ignore irrelevant facts and circumstances;
- The body or person(s) exercising discretion must act with a view to fulfil the purpose set out above; and
- The body or person(s) exercising discretion must act honestly, reasonably, impartially and in good faith.

Discretionary Rule: *Any exercise of discretion must take into account the rationale of the index, the purpose of the rules with regard to which discretion is exercised, the objective to preserve market integrity and reliability of the index calculation to avoid undue market impact, the technical feasibility and economic reasonability, and the interest of licensees or investors.*

3.16.2 Responsibility for Decision-making

The cases in which STOXX Ltd. may exercise discretion regarding the index methodology and its application are noted in the respective rules of this Guide.
The following bodies are involved in the decision-making process relevant for the indices governed by this Guide:

- Product Initiation Committee (PIC),
- Product Approval Committee (PAC),
- Index Operations Committee (IOC),
- Index Management Committee (IMC),
- Index Governance Committee (IGC),
- Oversight Committee (OC),
- Management Board (MB).

The following table summarizes the cases in which STOXX Ltd. Committee(s) may exercise discretion regarding the index methodology and its application:

<table>
<thead>
<tr>
<th>Case</th>
<th>Responsible STOXX Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index Termination</td>
<td>IGC</td>
</tr>
<tr>
<td>Non-rule based Correction</td>
<td>IOC, IMC, IGC</td>
</tr>
<tr>
<td>Deviation from notification procedure regarding Calculation Errors</td>
<td>IOC, IMC, IGC</td>
</tr>
<tr>
<td>Determination of expected price to new shares in case of Subscription Rights on Other Share Classes</td>
<td>IGC</td>
</tr>
<tr>
<td>Procedure for Subscription Rights on Instruments with Embedded Options</td>
<td>IGC</td>
</tr>
<tr>
<td>Limitations</td>
<td>IGC</td>
</tr>
<tr>
<td>Annual methodology review schedule</td>
<td>IMC, IGC</td>
</tr>
<tr>
<td>Initiation of ad hoc methodology reviews</td>
<td>IMC</td>
</tr>
<tr>
<td>Determination regarding materiality of changes to the index methodology</td>
<td>IMC</td>
</tr>
<tr>
<td>Deviation from standard consultation period in case of material changes of the index methodology</td>
<td>IGC</td>
</tr>
<tr>
<td>Decision whether material change shall become effective</td>
<td>IGC</td>
</tr>
<tr>
<td>Decision to conduct another consultation in case of material changes of the index methodology</td>
<td>IGC, OC</td>
</tr>
<tr>
<td>Deviation from notification procedure in case of material changes of the index methodology</td>
<td>IGC</td>
</tr>
</tbody>
</table>
Deviations from notification procedure in case of non-material changes of the index methodology | IMC

3.17 Calculation Correction

This section outlines the rules and procedures applicable in case of a calculation error meaning the provision of index values, usage of index constituents or other elements or the application of weightings, capping, or other aspects of the index methodology in a manner that is not in line with this index methodology, e.g. due to a mistake, incorrect input data, etc.

3.17.1 Rule-based Correction

STOXX Ltd. corrects a Calculation Error without delay on the dissemination day it occurred, provided that STOXX Ltd. becomes aware of such Calculation Error before 15:30 CET of that dissemination day and insofar as technically and operationally feasible. STOXX Ltd. does not change intraday index composition of an index.

If STOXX Ltd. became aware of a Calculation Error at or after 15:30 CET, STOXX Ltd. aims at correcting the Calculation Errors as of the end of the next dissemination day, including corrections to index constituents.

STOXX Ltd. amends without undue delay previous incorrect index values or input data only if they required for the calculate subsequent index values calculation. Incorrect real-time index values disseminated before the effective time of the correction are not restated.

3.17.2 Non-rule based Correction

If the above-outlined rule-based error correction cannot be applied, the IGC assesses without undue delay:

- if and how the Calculation Error should be corrected, including if the index shall be restated, and/or
- if the dissemination of index values shall be suspended (Discretionary Rule, see Section 3.16).

An index should be restated, when the performance of the index (other than Selection Indices) can no longer be replicated. A suspension of index dissemination is triggered when IGC decides that the correction will take significant time during which misleading index values could lead to financial, legal and reputational risks (Discretionary Rule, see Section 3.16).

STOXX Ltd. suspends the dissemination of an index at the latest at the end of the dissemination day after it became aware of a Calculation Error, if the Calculation Error has not been corrected by then.

STOXX Ltd. will resume the dissemination of the index as soon as the correct index calculation is feasible and the correct historical values are available.

3.17.3 Notifications

In general, notifications take the form of an announcement on the DAX website (http://www.dax-indices.com). Announcements can (but need not, depending on the decision of STOXX Ltd.) be published via financial relevant media.

With regard to Calculation Errors, STOXX Ltd. issues notifications in accordance with the following rules:

- STOXX Ltd. will publish a notification before correcting a Calculation Error. Notifications are effective immediately following their issuance, unless otherwise specified in the notification.

- The notification will specify if a Calculation Error will be corrected retrospectively. In case of retrospective correction, STOXX Ltd. will publish the notification using the new end of day closing price.

- If STOXX Ltd. decides under Section 3.17.2 that index dissemination is suspended until the Calculation Error is corrected, a resume notification is published specifying the point in time when index dissemination is resumed and the correction will take place.

STOXX Ltd. will refrain from the issuance of a notification if it reaches the view that the issuance of a notification is not in line with the applicable laws and may decide to issue such Notification at a later point in time when such reasons have lapsed (Discretionary Rule, see Section 3.16). By reason of force majeure or other events beyond the control of STOXX Ltd. it might become impossible for STOXX Ltd. to issue a notification in due time or by the means set out herein. In such cases STOXX Ltd. may exceptionally issue the notification either subsequently immediately following such event or in any case by other means (Discretionary Rule, see Section 3.16).
4 Adjustments

The performance indices are adjusted for exogenous influences (e.g. price-relevant capital changes) by means of certain correction factors, assuming a reinvestment according to the “opération blanche”.

The indices require a simultaneous adjustment of systematic price changes. The prerequisite for this is to calculate the correction factor on an ex-ante basis.

Consequently, already the first “ex” price can be adequately included for index calculation purposes. The ex-ante incorporation of adjustments presupposes a general acceptance of the computation formula as well as a general availability of the parameters used.

All parameters necessary for the respective computation are available from STOXX Ltd. via its website (dax-indices.com) on the evening before each adjustment. As with all other adjustment processes there may be differences between the calculated values and the actually traded prices. However, since a preliminary correction is necessary and any delay would be problematic, this procedure remains the most appropriate one.

The calculated adjustment factor and a synthetic price accordingly adjusted for this factor are used in the index from the ex-date of a share as long as there is no “ex” price available.

A detailed description of price-relevant capital changes as well as a description of the calculation of the correction factor c_A can be found in the Guide to the DAX Equity Indices.

For customers STOXX Ltd. provides a 10-calendar-days corporate action forecast.

5 General Information

5.1 Index Labels

An index is published with the label “A” (“amtlich”) once the opening criteria are fulfilled. Where the opening criteria have not been met for an index on a certain trading day, an index value is derived from the last available prices at the end of the calculation period. Accordingly, this index is labelled “I” (indicative).

Subsequent index ticks are continuously checked for its deviation. Once an index specific threshold is breached, the corresponding index ticks are disseminated with an index supplement "U" (for unchecked, instead of "A" for amtlich) and an immediate operational check is triggered. If the deviation was justified (e.g. due to market conditions), the index will manually be switched back to "A", i.e. labelled in line with its corresponding status.

5.2 Historical Data

Historical index data exists for all indices, dating back at least to the respective base date.
Until 18 June 1999, inclusive, data had been generated on the basis of prices sourced from floor trading at the Frankfurt Stock Exchange. Since 21 June 1999, time series have been based on Xetra® price data.

Time series for the various indices are available at www.dax-indices.com.

5.3 Index Termination Policy

For termination of an index or an index family that underlie financial products issued on the market, to the knowledge of STOXX Ltd., a market consultation will be conducted by STOXX Ltd. in advance of the termination. The length of the consultation period will be defined in advance based on the specific issues of each proposed termination subject to STOXX Benchmark Transition Policy (Discretionary Rule, see Section 3.16). During the consultation period, clients and third parties will have the chance to share their concerns regarding the termination of the index or index family. Based on the collected feedback, STOXX Ltd. may rethink its decision to terminate an index or an index family (Discretionary Rule, see Section 3.16). At the end of the consultation period, STOXX Ltd. will publicly announce its final decision about the termination. A transition period will be granted in the event of termination (Discretionary Rule, see Section 3.16).

For termination of an index or an index family that do not underlie financial products issued on the market, no market consultation will be conducted.

5.4 Limitations

This section applies in the event of Limitations that occur in case of

- insufficient rules meaning, the absence of a methodology rule, provision or procedure which leads to the failure of determining the respective index value or which leads to an index value that does not properly reflect the concept / nature of the index, e.g.:
 - performance of the index can no longer be physically replicated;
 - insufficient available index constituents to fulfil the requirements of the Index Methodology;
 - market disruption which results in the performance of the index being unable to be tracked,

- unclear rules, meaning a situation in which the rules leave multiple possible interpretations on how a certain rule shall be applied to a specific situation

- failing to produce index values as intended,

- data insufficiency, meaning a scenario in which the calculation of an index is no longer possible due to insufficient data quantity or quality, and

- extreme market events, meaning events that by their nature cannot be foreseen or whose impact on an index or the economic reality the index represented cannot be determined in
advance. Examples may be, but are not limited to, the following: (i) a country announces changes to its currency convertibility or restrictions on capital flows; (ii) a country experiences a market disruption, an event that materially negatively influences the aggregated liquidity and market capitalization of entire markets.

If a Limitation has occurred, the IGC shall decide if and how the Limitation shall be rectified (Discretionary Rule, see Section 3.16). Any such rectification may comprise deviations from the index methodology which may apply as long as the Limitation persists (Discretionary Rule, see Section 3.16).

If a decision to deviate from the index methodology is taken, it will be communicated as soon as possible soon as possible in form of an Announcement or Press Release. STOXX Ltd. will refrain from the issuance of a notification if it reaches the view that the issuance of a notification is not in line with applicable laws and may decide to issue such notification at a later point in time when such reasons have lapse (Discretionary Rule, see Section 3.16). By reason of force majeure or other events beyond the control of STOXX Ltd. it might become impossible for STOXX Ltd. to issue a notification in due time or by the means set out herein. In such cases STOXX Ltd. may exceptionally issue the notification either subsequently immediately following such event or in any case by other means.

Any measures will be implemented two dissemination days later and will enter into effect the next dissemination day after implementation, unless a different effective date is specified in the notification.

6 Methodology Review

The purpose of the methodology review is to ensure integrity of the index, i.e. that the index methodology remains executable and results in an accurate and reliable representation of the market / economic realities the index seeks to measure.

6.1 Frequency of Review

In order to ensure the index integrity is maintained at all times, the methodology is reviewed annually and ad hoc if a Limitation has occurred. If a Limitation cannot be properly dealt with by a methodology review, this may give rise to an index cessation or index transition. STOXX Ltd. shall not be liable for any losses arising from any decisions taken as part of a methodology review.

6.2 Review Procedure

6.2.1 Initiation of Methodology Review

The IMC proposes an annual methodology review schedule for approval by the IGC (Discretionary Rule, see Section 3.16).

The IMC is in charge of initiating ad hoc methodology reviews in case of a Limitation or based on recommendations to initiate a Methodology Review by other STOXX Ltd. Committees (Discretionary Rule, see Section 3.16).
6.2.2 Decision and Escalation

The following STOXX Ltd. Committees are responsible for making the decisions on amendments to an index methodology:

The IMC decides on changes to the index methodology, unless

a. a material change to the index methodology is proposed (see Section 6.3 below),

b. the change is triggered by an Unclear Rule or Insufficient Rule (as part of a Limitation, Section 5.4), or

c. financial products relating to the index have a notional value/notional amount of more than EUR 100 mn.

If the IMC is not in charge, the decision is taken by the IGC (i.e. in the cases set forth in a) to c) above).

6.3 Material Changes with Consultation

In case of proposed material changes to the index methodology a consultation will be performed.

A change to an index methodology shall be considered material in the event of

- a change in the index objective or market/economic reality the index aims to represent (e.g. market leader components vs. mid cap companies),

- a change which affects the composition and weighting rules of an Index,

- a change in the calculation methods and formulas,

- a change in the rules regarding the rebalancing of the weights of index constituents by application of the index methodology (Index Rebalancing),

- a change in the rules regarding the review of index constituents and their respective weights by application of the index methodology (Index Review), and/or

- rules regarding a change in the adjustment of weights of the index constituents or the compositions of the index constituents (as applicable) of equity indices due to Corporate Actions (Corporate Action Adjustment),

resulting in a significant change of the concept / nature of the index. The IMC determines whether an amendment is material as defined. In cases where the materiality cannot clearly be assessed the IMC is responsible for making the decision (Section 3.16).

STOXX Ltd. consults a proposed material change with reasonably affected licenses/investors. A licensee shall be considered affected if he has licensed the respective index. An investor shall be considered affected if he owns contracts or financial instruments that reference the respective index.
Taking into account the principle of proportionality, STOXX Ltd. informs affected licensees/investors as follows:

- licensees either directly and/or via public consultation;
- investors either via licensees affected by the material change and/or via public consultation.

STOXX Ltd. shall inform affected licensees and investors of the key elements of the index methodology that will in its view be impacted by a proposed material change and information on the rationale for any proposed material change including an assessment as to whether the representativeness of the index and its appropriateness for its intended use are put at risk in case the proposed material change is not put in place.

The consultation shall enable investors and licensees to submit comments. The standard consultation period shall be at least 1 month with the option to extend this period (Discretionary Rule, see Section 3.16). The IGC may decide to shorten the 1 month period (Discretionary Rule, see Section 3.16) in the following cases:

- in urgent cases, such as a situation in which the index cannot be replicated anymore;
- in situations where there is no known licensee / investor impact or only a limited number of affected licensees / investors;
- in order to align the effective date of a proposed changed with an Index Rebalancing, Index Review, and Corporate Action Adjustment, or
- any other similar cases.

The IGC in accordance with this Section 6.3 will consider the feedback received and decide whether the material change shall become effective (Discretionary Rule, see Section 3.16). The IGC is not bound by any feedback received. If the received feedback is ambiguous, the IGC may decide to conduct another consultation (Discretionary Rule, see Section 3.16). If no licensee / investor participate in the consultation, the consulted material change shall enter into effect as outlined in the consultation material.

If the IGC decides that a material change shall become effective, STOXX Ltd. will communicate a timeline on the implementation of the material change, if not already communicated in the consultation material. The decision will be communicated as soon as possible in the form of an Announcement or Press Release. STOXX Ltd. will refrain from the issuance of a notification if it reaches the view that the issuance of a notification is not in line with applicable laws and may decide...
to issue such Notification at a later point in time when such reasons have lapsed (Discretionary Rule, see Section 3.16). By reason of force majeure or other events beyond the control of STOXX Ltd. it might become impossible for STOXX Ltd. to issue a notification in due time or by the means set out herein. In such cases STOXX Ltd. may exceptionally issue the notification either subsequently immediately following such event or in any case by other means.

STOXX Ltd. will after the consultation make available the licensees / investors feedback received in the consultation and STOXX Ltd.’s summary response to those comments, except where confidentiality has been requested by the respective licensee / investor.

6.4 Non-Material Changes without Consultation

Non-material changes of the index methodology, including a description of the impact and the rationale, will be announced via Announcement or Press Release, effective immediately following publication, unless otherwise specified in the notification (Discretionary Rule, see Section 3.16). STOXX Ltd. will refrain from the issuance of a notification if it reaches the view that the issuance of a notification is not in line with applicable laws and may decide to issue such Notification at a later point in time when such reasons have lapsed (Discretionary Rule, see Section 3.16). By reason of force majeure or other events beyond the control of STOXX Ltd. it might become impossible for STOXX Ltd. to issue a notification in due time or by the means set out herein. In such cases STOXX Ltd. may exceptionally issue the notification either subsequently immediately following such event or in any case by other means.

7 Appendix

7.1 ISINs and Alpha Codes

<table>
<thead>
<tr>
<th>Index</th>
<th>Alpha (Price)</th>
<th>ISIN (Price)</th>
<th>Alpha (Gross)</th>
<th>ISIN (Gross-TR)</th>
<th>Alpha (Net)</th>
<th>ISIN (Net-TR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DivDAX®</td>
<td>GSUK</td>
<td>DE000A0C33C3</td>
<td>GSUL</td>
<td>DE000A0C33D1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DivMSDAX</td>
<td>2DW3</td>
<td>DE000A0Z3LT6</td>
<td>2DW2</td>
<td>DE000A0Z3L8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAXplus® Seasonal Strategy</td>
<td>D1AA</td>
<td>DE000A0C4BU0</td>
<td>D1AB</td>
<td>DE000A0C4BV8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAXplus® Export Strategy</td>
<td>D1EK</td>
<td>DE000A0C4BW6</td>
<td>D1EP</td>
<td>DE000A0C4BX4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAXplus® Covered Call</td>
<td></td>
<td>D3CC</td>
<td></td>
<td>DE000A0C4BY2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAXplus® Protective Put</td>
<td></td>
<td>D1A8</td>
<td></td>
<td>DE000A0C4CS2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DAX Strategy Indices

DAXplus® Minimum Variance Germany (EUR)
- XEFM: DE000AOMETM0
- XEFN: DE000AOMETN8
- 445P: DE000A1EXPH3

DAXplus® Minimum Variance Germany (USD)
- XEFZ: DE000AOMETZ2
- XEFO: DE000AOMETG3
- 445R: DE000A1EXPK7

DAXplus® Minimum Variance Germany (GBP)
- XEGB: DE000AOMEUB1
- XEGC: DE000AOMEUC9
- 445Q: DE000A1EXPJ9

DAXplus® Maximum Sharpe Ratio Germany (EUR)
- XEFK: DE000AOMETK4
- XEFL: DE000AOMETL2
- 445S: DE000A1EXPL5

DAXplus® Maximum Sharpe Ratio Germany (USD)
- F9MF: DE000A0ME7F9
- F9MG: DE000A0ME7G7
- 445U: DE000A1EXPN1

DAXplus® Maximum Sharpe Ratio Germany (GBP)
- F9MS: DE000A0ME7T0
- F9MT: DE000A0ME7U8
- 445T: DE000A1EXPM3

DAXplus® Maximum Dividend Germany
- 1NGX: DE000A0XXEA4
- 1NGL: DE000A0XXDZ3
- 7401: DE000A1EXPJ9

DAX® Dividend Points
- G7X3: DE000A0X7J39

DivDAX® Dividend Points
- 1MZB: DE000A0XXAL9

DAXplus® Family
- D1BM: DE000A0YKTM2
- D1BL: DE000A0YKTL4

DAXplus® Family 30
- D1BP: DE000A0YKTP5
- D1BN: DE000A0YKTN0

idDAX® 50 Equal Weight
- OTMU: DE000A2FG2S8
- OTMW: DE000A2FG2R0

idDAX® 50 Equal Weight Decrement 4.00%
- OTM8: DE000A2FG242

DAX® Equal Weight (EUR)
- A3QH: DE000A2LMX6
- A3QK: DE000A2LMX8
- A3QJ: DE000A2LMW8

DAX® Equal Weight (USD)
- A3QL: DE000A2LMY4
- A3QN: DE000A2LMO8
- A3QM: DE000A2LMZ1

Leverage & Short Indices

<table>
<thead>
<tr>
<th>LevDAX® x2</th>
<th>2DMT</th>
<th>DE000A0Z3JF9</th>
<th>D1AJ</th>
<th>DE000A4CB34</th>
</tr>
</thead>
<tbody>
<tr>
<td>LevDAX® x2 AR</td>
<td>DL36</td>
<td>DE000A1EX242</td>
<td>DL3Y</td>
<td>DE000A1EX29X</td>
</tr>
<tr>
<td>LevDAX® x3</td>
<td>DL37</td>
<td>DE000A1EX259</td>
<td>DL3Z</td>
<td>DE000A1EX2Y7</td>
</tr>
<tr>
<td>LevDAX® x3 AR</td>
<td>DH6A</td>
<td>DE000A1EXY51</td>
<td>DH56</td>
<td>DE000A1EXY02</td>
</tr>
<tr>
<td>LevDAX® x4</td>
<td>2DM2</td>
<td>DE000A0Z3JH5</td>
<td>4NAS</td>
<td>DE000A0SNAM8</td>
</tr>
<tr>
<td>LevDAX® x4 AR</td>
<td>DL38</td>
<td>DE000A1EX267</td>
<td>DL31</td>
<td>DE000A1EX224</td>
</tr>
<tr>
<td>LevDAX® x5</td>
<td>DH6B</td>
<td>DE000A1EXY69</td>
<td>DH57</td>
<td>DE000A1EXY10</td>
</tr>
<tr>
<td>LevDAX® x5 AR</td>
<td>DL39</td>
<td>DE000A1EX275</td>
<td>DL32</td>
<td>DE000A1EX200</td>
</tr>
<tr>
<td>LevDAX® x6</td>
<td>DH6C</td>
<td>DE000A1EXY77</td>
<td>DH58</td>
<td>DE000A1EXY28</td>
</tr>
<tr>
<td>LevDAX® x6 AR</td>
<td>DL30</td>
<td>DE000A1EX283</td>
<td>DL33</td>
<td>DE000A1EX218</td>
</tr>
<tr>
<td>LevDAX® x7</td>
<td>DH6D</td>
<td>DE000A1EXY85</td>
<td>DH59</td>
<td>DE000A1EXY36</td>
</tr>
<tr>
<td>LevDAX® x7 AR</td>
<td>DN2A</td>
<td>DE000A1EX291</td>
<td>DL34</td>
<td>DE000A1EX226</td>
</tr>
<tr>
<td>LevDAX® x8</td>
<td>DH6E</td>
<td>DE000A1EXY93</td>
<td>DH50</td>
<td>DE000A1EXY44</td>
</tr>
<tr>
<td>LevDAX® x8 AR</td>
<td>DN2B</td>
<td>DE000A1EX3A5</td>
<td>DL35</td>
<td>DE000A1EX234</td>
</tr>
<tr>
<td>LevDAX® x9</td>
<td>OJBD</td>
<td>DE000A13PHW5</td>
<td>OJBE</td>
<td>DE000A13PHX3</td>
</tr>
<tr>
<td>LevDAX® x10</td>
<td>OJBF</td>
<td>DE000A13PHY1</td>
<td>OJBG</td>
<td>DE000A13PHZ8</td>
</tr>
</tbody>
</table>

www.dax-indices.com
<table>
<thead>
<tr>
<th>LevDAX® x2 Monthly</th>
<th>2DWZ</th>
<th>DE000A0Z3LP4</th>
<th>2DWOK</th>
<th>DE000A0Z3LQ2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LevDAX® Optimal</td>
<td>2DWZ</td>
<td>DE000A0Z3LP4</td>
<td>2DWOK</td>
<td>DE000A0Z3LQ2</td>
</tr>
<tr>
<td>ShortDAX®</td>
<td>2DWZ</td>
<td>DE000A0Z3LP4</td>
<td>2DWOK</td>
<td>DE000A0Z3LQ2</td>
</tr>
<tr>
<td>ShortDAX® AR</td>
<td>2DWZ</td>
<td>DE000A0Z3LP4</td>
<td>2DWOK</td>
<td>DE000A0Z3LQ2</td>
</tr>
<tr>
<td>ShortDAX® x2</td>
<td>2DWZ</td>
<td>DE000A0Z3LP4</td>
<td>2DWOK</td>
<td>DE000A0Z3LQ2</td>
</tr>
<tr>
<td>ShortDAX® x3</td>
<td>2DWZ</td>
<td>DE000A0Z3LP4</td>
<td>2DWOK</td>
<td>DE000A0Z3LQ2</td>
</tr>
<tr>
<td>ShortDAX® x4</td>
<td>2DWZ</td>
<td>DE000A0Z3LP4</td>
<td>2DWOK</td>
<td>DE000A0Z3LQ2</td>
</tr>
<tr>
<td>ShortDAX® x5</td>
<td>2DWZ</td>
<td>DE000A0Z3LP4</td>
<td>2DWOK</td>
<td>DE000A0Z3LQ2</td>
</tr>
<tr>
<td>ShortDAX® x6</td>
<td>2DWZ</td>
<td>DE000A0Z3LP4</td>
<td>2DWOK</td>
<td>DE000A0Z3LQ2</td>
</tr>
<tr>
<td>ShortDAX® x7</td>
<td>2DWZ</td>
<td>DE000A0Z3LP4</td>
<td>2DWOK</td>
<td>DE000A0Z3LQ2</td>
</tr>
<tr>
<td>ShortDAX® x8</td>
<td>2DWZ</td>
<td>DE000A0Z3LP4</td>
<td>2DWOK</td>
<td>DE000A0Z3LQ2</td>
</tr>
<tr>
<td>ShortDAX® x9</td>
<td>2DWZ</td>
<td>DE000A0Z3LP4</td>
<td>2DWOK</td>
<td>DE000A0Z3LQ2</td>
</tr>
<tr>
<td>ShortDAX® x10</td>
<td>2DWZ</td>
<td>DE000A0Z3LP4</td>
<td>2DWOK</td>
<td>DE000A0Z3LQ2</td>
</tr>
<tr>
<td>ShortDAX® x2 Monthly</td>
<td>2DWZ</td>
<td>DE000A0Z3LP4</td>
<td>2DWOK</td>
<td>DE000A0Z3LQ2</td>
</tr>
<tr>
<td>ShortMDAX® x1</td>
<td>2DWZ</td>
<td>DE000A0Z3LP4</td>
<td>2DWOK</td>
<td>DE000A0Z3LQ2</td>
</tr>
<tr>
<td>ShortTecDAX</td>
<td>2DWZ</td>
<td>DE000A0Z3LP4</td>
<td>2DWOK</td>
<td>DE000A0Z3LQ2</td>
</tr>
<tr>
<td>idDAX 2x Leveraged NC Index</td>
<td>A2GTBT</td>
<td>DE000A2GTBT9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>idDAX 3x Leveraged NC Index</td>
<td>A2GTBU</td>
<td>DE000A2GTBU7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>idDAX 4x Leveraged NC Index</td>
<td>A2GTV</td>
<td>DE000A2GTBV5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>idDAX 5x Leveraged NC Index</td>
<td>A2GTVW</td>
<td>DE000A2GTBW3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>idDAX 6x Leveraged NC Index</td>
<td>A2GBTX</td>
<td>DE000A2GBTX1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>idDAX 7x Leveraged NC Index</td>
<td>A2GTVY</td>
<td>DE000A2GTBY9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>idDAX 8x Leveraged NC Index</td>
<td>A2GTBZ</td>
<td>DE000A2GTBZ6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>idDAX 10x Leveraged NC Index</td>
<td>A2GTV0</td>
<td>DE000A2GTB02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>idDAX 2x Short NC Index</td>
<td>A2GBT4</td>
<td>DE000A2GTBT9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAX Strategy Indices</td>
<td>ISIN/Eurex Code</td>
<td>DE000A2GBUS7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>idDAX 3x Short NC Index</td>
<td>A2GTB5</td>
<td>DE000A2GTBU7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>idDAX 4x Short NC Index</td>
<td>A2GTB6</td>
<td>DE000A2GTBV5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>idDAX 5x Short NC Index</td>
<td>A2GTB7</td>
<td>DE000A2GTBW3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>idDAX 6x Short NC Index</td>
<td>A2GTB8</td>
<td>DE000A2GTBX1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>idDAX 7x Short NC Index</td>
<td>A2GTB9</td>
<td>DE000A2GTBY9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>idDAX 8x Short NC Index</td>
<td>A2GTCA</td>
<td>DE000A2GTBZ6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>idDAX 10x Short NC Index</td>
<td>A2GTCB</td>
<td>DE000A2GTB02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>idDAX 12x Short NC Index</td>
<td>A2GTCB</td>
<td>DE000A2GTB10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>idDAX 14x Short NC Index</td>
<td>A2GTCD</td>
<td>DE000A2GTB28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>idDAX 15x Short NC Index</td>
<td>A2GTEC</td>
<td>DE000A2GTB36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Risk Control Indices</th>
<th>ISIN/Eurex Code</th>
<th>DE000A0Z3LB4</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX Risk Control 5% RV (ER)</td>
<td>2DWM</td>
<td>DE000A0Z3LB4</td>
</tr>
<tr>
<td>DAX Risk Control 5% RV (TR)</td>
<td>2DWN</td>
<td>DE000A0Z3LC2</td>
</tr>
<tr>
<td>DAX Risk Control 10% RV (ER)</td>
<td>2DWR</td>
<td>DE000A0Z3LF5</td>
</tr>
<tr>
<td>DAX Risk Control 10% RV (TR)</td>
<td>2DWS</td>
<td>DE000A0Z3LG3</td>
</tr>
<tr>
<td>DAX Risk Control 15% RV (ER)</td>
<td>2DWT</td>
<td>DE000A0Z3LH1</td>
</tr>
<tr>
<td>DAX Risk Control 15% RV (TR)</td>
<td>2DWU</td>
<td>DE000A0Z3LJ7</td>
</tr>
<tr>
<td>DAX Risk Control 20% RV (ER)</td>
<td>2DWW</td>
<td>DE000A0Z3LK5</td>
</tr>
<tr>
<td>DAX Risk Control 20% RV (TR)</td>
<td>2DWW</td>
<td>DE000A0Z3LL3</td>
</tr>
</tbody>
</table>

www.dax-indices.com
Hedged Indices

<table>
<thead>
<tr>
<th>Index Description</th>
<th>ISIN</th>
<th>Ticker</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX Monthly Hedged AUD (Pr)</td>
<td>OJBX</td>
<td>DE000A13PJE9</td>
</tr>
<tr>
<td>DAX Monthly Hedged CHF (Pr)</td>
<td>OJBY</td>
<td>DE000A13PJF6</td>
</tr>
<tr>
<td>DAX Monthly Hedged JPY (Pr)</td>
<td>OJBZ</td>
<td>DE000A13PJG4</td>
</tr>
<tr>
<td>DAX Monthly Hedged USD (Pr)</td>
<td>OJB0</td>
<td>DE000A13PJH2</td>
</tr>
<tr>
<td>DAX Monthly Hedged AUD (TR)</td>
<td>OJB1</td>
<td>DE000A13PJ8</td>
</tr>
<tr>
<td>DAX Monthly Hedged CHF (TR)</td>
<td>OJB2</td>
<td>DE000A13PK6</td>
</tr>
<tr>
<td>DAX Monthly Hedged JPY (TR)</td>
<td>OJB3</td>
<td>DE000A13PL4</td>
</tr>
<tr>
<td>DAX Monthly Hedged USD (TR)</td>
<td>OJB4</td>
<td>DE000A13PM2</td>
</tr>
<tr>
<td>HDAX Monthly Hedged CHF (TR)</td>
<td>OJEC</td>
<td>DE000A161DC0</td>
</tr>
<tr>
<td>HDAX Monthly Hedged USD (TR)</td>
<td>OJED</td>
<td>DE000A161DD8</td>
</tr>
<tr>
<td>HDAX Monthly Hedged CHF (Pr)</td>
<td>OJEA</td>
<td>DE000A161DA4</td>
</tr>
<tr>
<td>HDAX Monthly Hedged USD (Pr)</td>
<td>OJEB</td>
<td>DE000A161DB2</td>
</tr>
<tr>
<td>HDAX Daily Hedged USD (TR)</td>
<td>X2HZ</td>
<td>DE000A1X2Y25</td>
</tr>
<tr>
<td>DAXplus 30 Decrement 40 EUR (Pr)</td>
<td>OJHO</td>
<td>DE000A161FO6</td>
</tr>
</tbody>
</table>
7.2 Contact

- **Information on prices, index concepts and licenses**

 STOXX Ltd. – Customer Support
 Phone: +41 43430 - 7272
 E-mail: customersupport@stoxx.com

- **Press inquiries**

 Andreas von Brevern
 +49-(0) 69- 2 11-1 42 84

 Alexandra Reed
 +49-(0) 69- 2 11-1 7764
 E-mail: media-relations@deutsche-boerse.com

- **Wesbite**

 www.dax-indices.com

- **Mailing address**

 STOXX Ltd.
 Theilerstrasse 1a
 CH-6300 Zug
 P +41-(0)43 430 71 01

- **STOXX global representative offices**

 Frankfurt: +49 (0) 69 211 0
 Hong Kong: +852 2530 7862
 London: +44 (0) 207 862 7680
 New York: +1 646-876-2030
 Tokyo: +81-3-4578-6688